Anemia

- Anemia is defined as the reduction in one or more of the major RBC measurements: Hb, PCV or RBC count
- Anemia thresholds:
 - Women: 12
 - Men: 13
 - Pregnant: 11
- Causes of anemia:
 - Decreased production
 - Blood loss
 - Hemolysis
- Any anemia history should include:
 - Bleeding history
 - Systemic illness
 - Dietary history
 - Family history
 - Surgical history
 - Drug history
- Anemia syndrome (due to tissue hypoxia)
 - Dizziness
 - Fatigue
 - Shortness of breath
 - Headaches
 - Palpitations
- Any exam of anemic patient should include:
 - Liver and spleen exam
 - Signs of systemic disease
- Blood parameters:
 - MCV = PCV/# RBC 88±8
 - MCH = Hb/#RBC 28±2
 - MCHC MCH/MCV 34±2
- Corrected reticulocytes count: actual PCV/Normal PCV x reticulocyte correction factor
- Serum iron: amount of iron bound to transferrin
- TIBC: amount needed to bind all transferrin
- Percent saturation: amount of transferrin bound to iron expressed as a percentage
- Ferritin: amount of iron in the stores
<table>
<thead>
<tr>
<th></th>
<th>Iron def. anemia</th>
<th>Anemia of chr. Dis.</th>
<th>thalassemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV</td>
<td>Low</td>
<td>Normal/low</td>
<td>low</td>
</tr>
<tr>
<td>Serum iron</td>
<td>Low</td>
<td>low</td>
<td>Normal/high</td>
</tr>
<tr>
<td>TIBC</td>
<td>High</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>% saturation</td>
<td>Low</td>
<td>low</td>
<td>Normal/high</td>
</tr>
<tr>
<td>Ferritin</td>
<td>Low</td>
<td>Normal/low</td>
<td>Normal/high</td>
</tr>
</tbody>
</table>

- Ferritin is one of the best markers of iron deficiency anemia
- RDW: RBC distribution width; it measure variation in RBC volume, it ranges from 11/5% to 14.5%
- Follow up for IDA:
 - CBC every 3 months
 - Ferritin every 3 months
- Pathogenesis of anemia of chronic disease:
 - Decrease erythropoietin production
 - Suppression of erythroid progenitors
 - Blockade of reticulo-endothelial iron release
- Anemia is not a final diagnosis
- Hb electrophoresis does not give good results unless IDA is corrected
- Rule of 3:
 - Hb x 3 = PCV
 - #RBC x 3 = Hb
- Clues to macrocytic anemia:
 - Large beefy tongue
 - Associated autoimmune diseases such as vitilligo, TIDM, and autoimmune thyroid disease.
 - Neurological symptoms are more common with B12 deficiency (compared to folate deficiency)
 - Pernicious anemia is an autoimmune disease that is the end result of atrophic body gastritis
 - Positive parietal cell and intrinsic factor antibodies
 - The schilling test: test used to diagnose pernicious anemia
 - Causes of macrocytic anemia:
 - B12 deficiency
 - Folate deficiency
 - Chronic PPI use
 - Ileal disease or resection
 - Folate can correct B12 deficiency hematologically but not neurologically
 - Complications: subacute combined degeneration of spinal cord
 - Treatment:
 - No blood transfusion
 - Vitamin B12 injection daily for 7 days then monthly for life
- Thyroid function and DM monitoring
 o Response to treatment:
 ▪ Megaloblastic changes disappear in 2 days
 ▪ Fall of serum LDH in 2 days
 ▪ Reticulocytosis in 3-4 days
 ▪ Rise in Hb concentration in 10 days and normalization in 10 weeks
 o During early treatment, watch out for severe hypokalmia

- Myelodysplastic syndrome:
 o a spectrum of heterogenous myeloid clonal disorders characterized by:
 ▪ Ineffective hematopoeisis
 ▪ Dysmorphic cells
 ▪ Pancytopenia
 ▪ Frequent progression to AML
 o Increase in MCV and splenomegaly: think of MOS
 o Peak incidence occurs at age 60
 o 50% have cytogenic abnormality; most commonly deletion 5q
 o IPSS: international prognostic scoring system. It depends on:
 ▪ % of BM blasts
 ▪ Karyotype
 ▪ Cytopenia
 o The lesser the IPSS score, the better the prognosis
 o Survival ranges between 6 months and 6 years.
 o WHO classification based prognostic scoring system (WPSS): here, transfusion requirement is added as a prognostic variable
 o Treatment:
 ▪ Best supportive care including iron chelation
 ▪ Hemopoietic growth factor
 ▪ Immunomodulatory drugs
 ▪ Chemotherapy
 ▪ Stem cell therapy

- Hemolytic anemia:
 o Clues:
 ▪ Jaundice
 ▪ Increased LDH
 ▪ Indirect bilirubenemia
 ▪ Polycythemia
 ▪ Supravital stain
 ▪ Erythroid hyperplasia in bone marrow
 o Spherocytosis:
 ▪ Hereditary spherocytosis
- Autoimmune hemolytic anemia
 - If the RBC lifespan is >20 days, there will be no symptoms:
 - It can be classified into:
 - Congenital:
 - Membrane defects such as hereditary spherocytosis
 - Enzymopathies in cases of G6PD and PK deficiencies
 - Hemoglobinopathies: thalassemia and sickle cell anemia
 - Acquired:
 - Immune mediated
 - Non-immune mediated
 - A different classification:
 - Extravascular hemolysis: ingested by reticuloendothelial cells in the liver and spleen
 - Intravascular:
 - Very toxic metabolites
 - Decreased serum haptoglobin
 - Hemoglobinurea and hemosidenuria

- Consequences of hemolytic anemia:
 - Splenomegaly
 - Gallstones (small and multiple)
 - Dark urine
 - Increased folate requirement
 - Aplastic crisis due to parvovirus B19

- Warm autoimmune hemolytic anemia:
 - Causes extravascular hemolysis
 - IgG mediated
 - Positive Coomb’s test
 - Etiology:
 - Primary: 45%
 - Secondary: 40%:
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infections
 - Drugs (especially methyldopa)
 - MCV: normal to high
 - Treatment:
 - Prednisone 1mg/kg/day for two weeks then taper
 - Rituximab
 - IVIG

- Cold autoimmune hemolytic anemia:
Rare
- Signs and symptoms exacerbated by cold
- IgM mediated
- Associated with mycoplasma infection
- Therapy is ineffective
- It is more severe than the warm type because it is intravascular.
- It is caused by:
 - Mechanical damage: microangiopathic hemolytic anemia
 - Chemical damage
 - Infection
 - Transfusion reaction
- Differential diagnosis of microangiopathic hemolytic anemia:
 - TTP
 - HUS
 - DIC
 - Pre-eclampsia/HELLP
 - Vasculitis
 - Malignant hypertension
- Congenital hemolytic anemias:
 - G6PD deficiency:
 - Ranges from asymptomatic to severe intravascular hemolysis
 - Triggers:
 - Drugs: primaquine, sulphamide antibiotics, sulfur-containing drugs, Henna in infants.
 - Infections
 - Mediterranean and African (A') are the most clinically significant
 - Enzyme activity is scarcely detectable in the Mediterranean type, but is normal in the African type
 - X-linked caused by single point mutations
 - G6PD Mediterranean is caused by 563 C->T
 - If there is red urine, think of hemolysis
- Hereditary spherocytosis:
 - Autosomal dominant
 - Clinical severity is highly variable
 - Presents with gallbladder stones
 - No consensus for splenectomy indications
 - Increased osmotic fragility
 - -ve DAT
 - Mutation in ankyrin
Mutation in spectrin

Sickle cell:

- Autosomal recessive
- Point mutation in beta globin gene (Glu → Val)
- Common in blacks
- Hb electrophoresis confirms the diagnosis and distinguished between SS, AS, and other variants

Consequences:
 - Chronic hemolytic anemia
 - Increased susceptibility to infections
 - Vaso-occlusive crisis: most common complication

Organs susceptible to vascular injury:
 - Lung
 - Brain
 - Ankle
 - Penis

Crises:
 - Vaso-occlusive crisis
 - Aplastic crisis
 - Sequestration crisis

Predisposing factors:
 - Hypoxia
 - Cold
 - Acidosis
 - Stress
 - Fever
 - Infection
 - Dehydration

50% of vaso-occlusive pain occurs in the lumbar spine.

Management of painful events:
 - Use hypotonic fluid and limit volume to avoid overhydration
 - Treat any underlying illness
 - Opioids (pethidine is not recommended)
 - Blood transfusion is indicated in uncomplicated pain episode

Prevention of pain episodes: Hydroxyurea: increases fetal hemoglobin. Side effects: leukopenia

Pain episodes last 5-7 days

Avascular necrosis of the hip occurs in 33%
• May have abnormal finger shape
• Acute chest syndrome:
 o Emergency
 o Can lead to death
 o Multifactorial: rib infarcts, pulmonary fat embolism, anf infection
 o 6% mortality rate
 o Treatment:
 ▪ Incentive spirometry
 ▪ Treat possible infection
 ▪ Bronchodilators and oxygen
 ▪ RBC transfusion
• Indications for transfusion in sickle cell patients:
 o Stroke
 o Acute chest syndrome
 o Aplastic crisis preoperative treatment
 o Splenic sequestration
 o Symptomatic anemia

- Thalassemia:
 o Beta thalassemia: chromosome 11
 o (B)→ normal, (B+)→ mutated with some activity, (B0) mutated with no activity
 o Features:
 ▪ Bosssing
 ▪ Expansion of bone marrow
 ▪ Hair on end sign
 ▪ Stunted growth
 ▪ Iron overload: heart, liver, endocrine gland, and skin
 o Treatment:
 ▪ Blood transfusions (more than sickle cell patients)
 ▪ Iron chelation (deferroxamine, oral deferasirox)
 ▪ Allo-bone marrow transplant (curative)
 ▪ Diagnosis by Hb electrophoresis: increase HgA2

- Aplastic anemia:
 o Severe life threatening syndrome
 o Characterized by peripheral pancytopenia and accompanied hypocellular bone marrow
 o Etiology:
 ▪ Acquired:
 • Idiopathic: most cases
 • Drugs: chloramphenicol

- Chemicals
- Infections: infectious mononucleosis
 - Congenital:
 - Fanconi anemia
 - Familial aplastic anemia
 - Features:
 - Anemia syndrome
 - Neutropenia syndrome
 - Thrombocytopenia syndrome
 - No splenomegaly
 - Treatment:
 - Remove causative agent
 - Supportive:
 - Treat infections
 - Treat bleeding
 - Transfusion
 - Immune-suppressants
 - Bone marrow transplant in patients <50
 - Delay transfusion due to possible graft vs host disease
Bleeding disorders

- Extrinsic pathway: tissue factor increases the activity of factor VII
- Intrinsic pathway: factor XII \rightarrow XI \rightarrow IX
- Common pathway: factor X \rightarrow V \rightarrow II (thrombin)
- Factor XIII stabilizes fibrin
- Factor VII can be activated by factor IX
- Gamma carboxylase is dependent on vitamin L
- Warfarin blocks vitamin K dependent factors
- PT \rightarrow extrinsic pathway
- PTT \rightarrow intrinsic pathway
- Thrombin time (TT) \rightarrow common pathway
- Hypocalcemia does not cause bleeding; very low levels of calcium are enough
- BT (bleeding time) VWD and thrombocytopenia
- Prolonged bleeding time does not predict excess surgical blood loss
- The most important thing before a surgery is a good history
- Hemophilia:

<table>
<thead>
<tr>
<th>Factor deficiency</th>
<th>Hemophilia A</th>
<th>Hemophilia B</th>
</tr>
</thead>
<tbody>
<tr>
<td>inheritance</td>
<td>VIII</td>
<td>IX</td>
</tr>
<tr>
<td>Incidence in males</td>
<td>1/10,000</td>
<td>1/50,000</td>
</tr>
</tbody>
</table>
| complications | | Soft tissue bleeding and compartment syndrome

- Clinically, they are the same
- Severity is related the factor level
- We administer factor 8 at a lower dose, it has a short t $\frac{1}{2}$
- We administer factor 9 at a higher dose, it has a long t $\frac{1}{2}$

Clinical features of bleeding disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Platelet</th>
<th>Coagulation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petichiae</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Site of bleeding</td>
<td>Skin, mucus membranes</td>
<td>Deep in soft tissues</td>
</tr>
<tr>
<td>Ecchymoses</td>
<td>Small, superficial</td>
<td>Large, deep</td>
</tr>
<tr>
<td>Hemarthrosis</td>
<td>rare</td>
<td>common</td>
</tr>
<tr>
<td>Bleeding after injury</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Bleeding after surgery</td>
<td>Immediate, usually mild</td>
<td>Delayed, often severe</td>
</tr>
</tbody>
</table>

- Coagulation factor disorders:
 - Inherited:
 - Hemophilia A and B
 - VonWillebrand’s disease (manifests as a platelet disorder)
 - Other factors deficiency
 - Acquired:
 - Liver disease
- Vitamin K deficiency or warfarin overdose
- DIC

- F8 gene on chromosome X
- F8 intron 22 inversion is responsible for 45% of cases of hemophilia A
- Severity is related to factor level
 - <1%: severe spontaneous bleeding
 - 1-5%: moderate bleeding with mild injury
 - 5-25%: mild bleeding with surgery or trauma

- Management of hemophilia A
 - Treat acute attacks with factor replacement
 - Analgesics
 - Evacuate for synovectomy (chemical, surgical)
 - Long term prophylaxis
 - Education, genetic counseling
 - Screen for inhibitor twice yearly since therapy is different
 - FVIII: recombinant or plasma derived
 - Complications of therapy (formation of inhibitors)
 - 10-15% of severe hemophilia A patients
 - 1-2% of hemophilia B patients

- VonWillebrand’s disease:
 - Labs:
 - Bleeding time: increased, normally below 10
 - PTT: increased
 - Factor VIIIc decreased, reduced because vWF is needed to carry it
 - vWFAg: decreased
 - INR: normal
 - Platelets: normal
 - Clot retraction: normal; used to exclude Glanzmann thromb.
 - vWFactor:
 - synthesized in endothelium and megakaryocytes
 - forms large multimer
 - carries factor VIII
 - anchors platelet to subendothelium
 - bridge between platelets
 - vWD
 - autosomal dominant
 - incidence: 1/10,000
 - causes mucocutaneous bleeding, but may manifest like hemophilia A
 - lifespan of factor VIII is reduced from 12-20 hours to <2 hours
 - Types:
- Type 1: partial quantitative deficiency (most common)
- Type 2: qualitative
 - Type 2A
 - Type 2B:
 - Here only the large multimers are absent
 - Association with hyperaggregation. Here, we also have thrombocytopenia, so we cannot give DDAVP.
- Type 3: total quantitative deficiency

<table>
<thead>
<tr>
<th>vWF assay</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>vWF antigen</td>
<td>decreased</td>
<td>normal</td>
<td>Decreased</td>
</tr>
<tr>
<td>vWF activity</td>
<td>decreased</td>
<td>decreased</td>
<td>Decreased0</td>
</tr>
<tr>
<td>Multimer analysis</td>
<td>normal</td>
<td>Normal/abnormal</td>
<td>Absent</td>
</tr>
</tbody>
</table>

- Acquired vonWillebrand syndromes:
 - Immune mediated
 - Proteolysis
- Treatment:
 - Cryoprecipitate: fibrinogen, factor VIII, and vWF
 - DDAVP (vasopressin, antidiuretic hormone)
 - Stimulates vWF secretion from endothelium
 - Used for mild type 1
 - Factor VIII concentrate (Humate P): used for types 2 and 3

- DIC:
 - Mechanism is through systemic activation of coagulation which leads to:
 - Intravascular deposition of fibrin which leads to thrombosis of small vessels with organ failure
 - Depletion of platelets and coagulation factors which leads to bleeding
 - Circulatory thrombin is responsible for the consumption of all the factors
 - Increased PTT, PT, TT, and increased dimmers.
 - Increased fibrin degradation products
 - Schistocytes
 - Decreased fibrinogen, decreased platelets, and increased BT
- Triggers:
 - Sepsis
 - Trauma
 - Malignancy
 - Obstetric complications
 - Vascular disorders
 - Toxins
- Immunological disorders
 - These triggers work by:
 - Release of tissue factor or thromboplastic substances into the circulation
 - Widespread injury to endothelial cells
 - Treatment:
 - Treat the underlying cause
 - Platelet transfusion
 - Fresh frozen plasma
 - Coagulation inhibitor concentrate (antithrombin)
 - Anticoagulation with heparin
 - Monitor PT, PTT, DD, fibrinogen degradation products, and platelet count
- Thrombophilia workup:
 - Mutations: methyldihydrofolate reductase (the most common)
 - Factors:
 - Factor V laden
 - Protein C, S
 - Antithrombin 3 (most severe)
 - Factor VIII
 - Antiphospholipid antibody
- Glanzmann throbasthenia
 - Defect of platelet aggregation
 - Life-long mucosal bleeding
 - Ovarian bleeding bleeding in closed spaces
 - Treatment is supportive (transfusion)
 - Labs:
 - Normal platelet count and morphology
 - Prolonged bleeding time
 - Absent or impaired clot retraction
 - No aggregation with physiological aggregating agent (light doesn’t pass through the plasma mixture). These agents include ADP, thrombin, and collagen
 - Absent or reduced GPIIb-IIIa
 - Normal PT, PTT, and TT
 - Common in Jordan
 - Autosomal recessive
 - no binding of fibrinogen
Platelet disorders

- **Types:**
 - Quantitative:
 - Abnormal distribution
 - Dilution effect
 - Decreased production
 - Increased destruction
 - Qualitative:
 - Inherited:
 - Defects of platelet adhesion: Bernard Soulier disease, von Willbrand disease
 - Defects of platelet secretion
 - Defects of platelet aggregation (thrombasthenia)
 - Acquired:
 - Medications (aspirin, NSAID’s)
 - CKD
 - Cardiopulmonary bypass

- **Platelet transfusion complications:**
 - Transfusion reaction:
 - Higher than in RBC transfusions
 - Bacterial contamination
 - Platelet transfusion refractoriness:
 - Allo-immune
 - Non-immune:
 - Microangiopathic hemolytic anemia
 - Coagulopathy
 - Splenic sequestration
 - Fever and infection
 - Medications: vancomycin, interferons

- **ITP (AKA ATP)**
 - Increased platelet destruction mediated by autoantibodies
 - Characterized by decreased production of platelets despite increased megakaryocytes in bone marrow
 - Treatment:
 - 50,000 platelet count is considered the safe cutoff value; therefore, treatment depends on platelet count:
 - > 50,000: no symptoms, no treatment
 - 50,000: if the patient is not bleeding, no treatment. If the patient is bleeding administer steroids, IVIG, or antiD
• <20,000: if the patient is not bleeding, administer steroids. If the patient is bleeding, administer steroids, IVIG, antiD and admit.

Curative therapy:
• Splenectomy
• Rituximab

Rescue therapy:
• High dose steroids
• IVIG or anti-D

Chronic therapy: many agents including thrombopoietin agonists

• Steroids increased platelet count by increased apoptotic death of autoantibody producing lymphocytes and down regulation of macrophage activity responsible for platelet destruction

• IVIG increases the platelets by overwhelming the reticuloendothelial system. It interferes with platelet destruction

• Anti-D: is an Ig directed against the D antigen of RH blood group system, it raises platelet count by saturation macrophage Fc receptor with anti-D coated RBC’s

• Follow up for secondary causes of ITP such as SLE and lymphoproliferative neoplasms.

• If female, monitor during pregnancy and delivery. Make sure to provide adequate post-delivery care and avoid using forceps for delivery

 o Flashback:

 ▪ Thrombocytopenia associated with shortened survival:

 • Immune mediated thrombocytopenia:
 o ITP
 o TTP
 o Heparin induced thrombocytopenia (HIT)
 o Drug induced thrombocytopenia

 • Non-immune destruction of platelets:
 o DIC
 o Sepsis

 • Multifactorial thrombocytopenia:
 o Hospital associated
 o Cancer associated

 o Thrombocytopenia:

 ▪ Associated with bleeding:
 • ITP
 • Drug induced

 ▪ Associated with thrombosis:
 • TTP
- DIC
- Trousseau’s syndrome
- HIT

○ Heparin induced thrombocytopenia:
 ▪ Suspected in:
 - Normal platelet count prior to heparin with decline to <100,000 or reduction of platelet count by 50%
 - Onset of thrombocytopenia by day 14
 - Any new thrombotic event while on heparin
 - Skin inflammation or necrosis at heparin injection site
 - Exclusion of other causes of thrombocytopenia
 ▪ Outcome in HIT patients:
 - New thrombosis in up to 50%
 - Amputation in 10%
 - Death in 10-20%
 ▪ 6 principles of treatment in HIT:
 - 2 do’s
 - Stop heparin
 - Start new anticoagulant: donnaparoid, lepirudin, or argatroban
 - 2 don’t
 - No warfarin until substantial platelet count recovery
 - No platelet transfusion
 - 2 diagnostics:
 - Labs for HIT
 - Duplex for lower limb
 ○ TTP:
 ▪ Pentad of findings:
 - Fever
 - Neurologic changes
 - Renal impairment
 - Thrombocytopenia (<20,000)
 - Microangiopathic hemolytic anemia (schistocytes), Hgb <10, and lab findings of hemolysis
 ▪ Other findings:
 - Severe deficiency of ADAM-TS13
 - PT, PTT, TT are normal (unlike DIC)
 - MRI may show leukoencephalopathy or brain infarcts
- ADAM-TS13 is vWF protease; its deficiency causes ultra large multimer production which predisposes to thrombus formations
 - Differential: HUS; however, in HUS ADAM-TS13 is normal
 - Treatment:
 - Initial treatment: plasma exchange (plasmapheresis) daily
 - Relapse: plasmapheresis + rituximab (anti CD20)
 - Other treatment:
 - Vincristin
 - Splenectomy
 - Steroids
 - Aspirin
 - Monitor LDH, platelets, clinical status, and ADAM-TS13
 - LDH correlates with disease activity
 - Veno-thrombo embolism (VTE):
 - Causes:
 - Genetic
 - Environmental
 - Triggers
 - Risk factors:
 - Stasis
 - Hypercoagulability
 - Endothelial damage
 - Prophylaxis:
 - Pharmacological prophylaxis reduces DVT and PE by 50-65%
 - Bleeding risk is rare
 - HIT → 2.4% with unfractionated heparin, 0.06% with LMWH
 - Prophylaxis reduces VTE’s burden
 - Homozygous factor V laden patients have a very high risk for developing VTE (20-30%)
 - Importance of VTE:
 - Preventable
 - Life-threatening
 - Long term complications
 - Common
 - Costly
 - The burden of VTE:
 - DVT:
 - 40% develop post thrombotic syndrome
 - 30% develop PE:
- 3% death
- 5% pulmonary hypertension
- Patients >45 years of age are at a greater risk for VTE
- Post DVT syndrome:
 - Pain (aching and cramping)
 - Heaviness
 - Itching
 - Swelling
 - Varicose veins
 - Brownish skin discoloration
 - Ulcers
- Treatment:
 - Unfractionated heparin
 - LMWH
 - Overlap of heparin and warfarin
- Other medications:
 - Thrombolytic therapy
 - Thrombectomy
 - IVC filter
 - Embolectomy
- Duration of treatment is individualized
- Heparin’s side effects:
 - HIT (early and late)
 - Bleeding
 - Hypersensitivity
 - Osteoporosis
 - Increased thyroxin
 - Dermatologic (alopecia)
 - Metabolic (hypokalemia, hyponatremia, and hypertriglyceremia)
- Heparin’s antidote: protamine sulfate
- LMWH antidote: factor X + fresh blood
- Warfarin:
 - Plasma concentration peaks 2-8 hours after oral dose
 - 99% bound to albumin
 - T 1/2: 25-60 hours
 - Inhibits vitamin K dependent factors: prothrombin, factor VII, IX, and X.
 - Inhibits protein C and S
The 1st factors to decrease after warfarin administration are factor VII and protein C
It takes 3-5 days for warfarin to start working; we usually bridge the patients using heparin

- Warfarin resistance (>20 mg per day with subtherapeutic INR)
 - Non-compliance
 - Lab errors
 - Excessive vitamin K intake
 - Mutations (rare)

- Warfarin sensitivity: (<2 mg per day with high INR)
 - 15% of Caucasians
 - Cytocrome p450 polymorphism that decreases the rate of metabolism

- Side effects of warfarin:
 - Bleeding (treated with vitamin K or fresh frozen plasma)
 - Birth defects and abortion
 - Skin necrosis
Blood transfusion

- ABO system:
 - O antigen is made of H substance
 - A antigen is made of H substance + N-acetylgalactosamine
 - B antigen is made of H substance and galactose

- Blood types, antibodies and antigens:
 - A: A antigen on RBC, serum anti B
 - B: B antigen on RBC, serum anti A
 - AB: A and B antigen on RBC, no serum antibodies
 - O: no antigens on RBC, serum anti A and anti B

- O plasma is not a common donor because it has anti-A and anti B while O RBC is a common donor

- Blood donor criteria:
 - Age (17-65)
 - Weight >50
 - Contact with infection
 - General health
 - Specific illness

- Whole blood donation (500 mL); then it can be centrifuged:
 - 200 mL of packed RBC
 - Platelets with plasma (can be centrifuged)
 - Platelet concentrate (50 mL): 5 days shelf life
 - Plasma (fresh frozen): 250 mL; one year shelf life

- Leukodepletion:
 - Universal leukodepletion introduced in 1999 to reduce the risk of vCJD transmission by blood
 - Other benefits: less febrile reaction, less alloimmunization, less GVHD, and less CMV

- Blood donation testing:
 - Microbiology markers
 - Blood grouping and screening for high titer antibodies
 - Quality monitoring

- Washed RBCs:
 - Prevents hemolysis and anaphylaxis
 - For PNH patients and IgA deficient patients

- Irradiated RBCs:
 - Prevents GVHD
 - For immune-deficient patients

- RBCs shelf life:
 - With citrate: 28 days
- Transfusion reaction:
 - Acute:
 - Immunologic:
 - Hemolytic
 - Febrile
 - Allergic
 - TRALI
 - Non-immunologic:
 - Circulatory overload
 - Hemolytic
 - Air embolism
 - Metabolic
 - Delayed (>24 hours)
 - Immunologic:
 - Allo-immunization (HLA)
 - Hemolytic
 - Post transfusion purpura
 - Graft Vs Host disease (GVHD)
 - Immunedulation
 - Non-immunogenic:
 - Iron overload
 - Viral infections
 - Other infections
 - Protocol for all transfusion reactions:
 - Stop transfusions immediately
 - Maintain IV access with 0.9% NaCl
 - Check blood components for patient’s ID
 - Notify blood bank
 - Send blood sample and urine to blood bank
 - Keep blood unit in case culture becomes necessary
 - Support patient as necessary
 - Transfusion transmitted disease:
 - HIV: 1/500,000
 - Hep C: 1/600,000
 - Hep B: 1/500,000
 - CMV: 50% of donors are sero-positive
 - Bacteria: 1/250 with platelet transfusion
 - Platelet transfusion:
 - Platelet concentrate (random donors)
- Pheresis platelets (single donor)
 - Target levels:
 - Bone marrow suppressed patients >20,000
 - Bleeding/surgical patients >50,000
- Platelet transfusion complications:
 - Higher incidence than in RBC transfusions
 - Related to length of storage, leukocytes, or RBC mismatch
 - Bacterial contamination
- Patients with frequent platelet transfusions become refractory to transfusion because:
 - Allo-immune destruction of platelets (HLA antigen)
 - Non-immune refractoriness:
 - Microangiopathic hemolytic anemia
 - Coagulopathy
 - Splenic sequestration
 - Fever and infection
 - Medications (amphotericin, vancomycin, ATG, and interferones)
- Fresh frozen plasma:
 - Content: plasma with low factor V and VIII
 - Indications:
 - Coagulation deficiencies (liver disease and trauma)
 - DIC
 - Warfarin reversal
 - Factor VII and XI deficiencies
 - Dose: 10-15 mL/kg
- TRALI:
 - Transfusion related acute lung injury
 - Not rare, but underdiagnosed
 - Potentially fatal
 - Presents as pulmonary edema
 - Occurs within 1-4 hours of starting the transfusion
 - Clinical features:
 - Acute respiratory distress
 - Fever with chills
 - Non-productive cough
 - Cyanosis
 - Hypotension
 - Chest pain
 - Chest X-ray shows bilateral pulmonary infiltrates in the hilar region
 - Pathogenesis:
- Classical theory (immune TRALI)
 - Donor’s antibodies react with patient’s neutrophils
 - Neutrophils sequestrate in pulmonary vasculature
 - Cytokine and components are liberated
 - Damage to endothelium leading to pulmonary edema

- Two-hit theory (non-immune TRALI)
 - Predisposing condition (sepsis, surgery, trauma, or malignancy)
 - Pulmonary endothelial activation and neutrophil sequestrations
 - Lipids and WBCs antibodies activate neutrophils which causes endothelial damage

 - TRALI management:
 - Non-specific
 - Largely supportive
 - Respiratory support with \(\text{O}_2 \) and mechanical ventilation
 - Steroids

 - Note: females with previous pregnancy are not allowed to donate blood because all females produce antibodies against their husbands’ and babies’ antigens
Leukemias

- CLL:
 o The most common adult leukemia
 o Clues for diagnosis:
 ▪ Elderly >50
 ▪ Hypoglobinemia (IgA deficiencies to increased lymphocytes)
 ▪ Autoimmune hemolysis (DAT positive)
 ▪ CD19, CD 20
 ▪ Mostly asymptomatic
 ▪ Uncontrolled proliferation of mature defective B lymphocytes
 o Clinical presentation:
 ▪ Lymphocytosis:
 • Morphologically mature
 • Immunologically immature
 • Accumulation in blood, lymphatics, and bone marrow
 ▪ Enlarged lymph nodes
 ▪ Splenectomy
 ▪ Hypogammaglobulinemia: mucosal infections
 o Approach:
 ▪ Decide the type of lymphocyte T Vs B
 ▪ Determine the stage (Rai Vs Binet systems)
 ▪ Cytogenetics
 ▪ Decide therapy, prognosis, and follow-up
 o Staging (Rai/Binet systems)
 ▪ Early: 10 year median survival
 ▪ Intermediate: 5-7 years median survival
 ▪ Advanced: 1-3 years median survival
 o It is a heterogenous disease:
 o Prognostic factors:
 ▪ Lymphocytosis
 ▪ Lymph node involvement
 ▪ Organomegaly
 ▪ Anemia
 ▪ Thrombocytopenia
 ▪ Lymphocyte doubling time:
 • >1 year: good
 • <1 year bad prognosis
 ▪ VH gene mutation:
 • Unmutated: rapid progression
- Mutated: slow progression
 - Surrogate markers ZAP70 and CD38 carry a bad prognosis
 - Loss of P53 carries the worst prognosis
- Treatment criteria:
 - Symptomatic: if the patient is asymptomatic, wait until B cell symptoms appear
 - Decline in Hb or Platelets
 - Lymphadenopathy
 - Hepatosplenomegaly
 - Recurrent infections
- Treatment:
 - Rituximab- antiCD20
 - Chemoimmunotherapy
 - Chlorambucil
- CML
 - Clonal expansion of hematopoietic stem cells possessing a reciprocal translocation between chromosome 9 and 22 (Philadelphia chromosome)
 - Fusion of BCR region on chromosome 22 with ABL gene from chromosome 9
 - Has 3 phases:
 - Chronic
 - Accelerated
 - Blas crisis
 - Incidence is 1.5/100,000
 - Middle age (40-60)
 - Accounts for 20% of adult leukemias
 - Symptoms:
 - Insidious onset, accidental discovery
 - Fatigue, malaise, weight loss
 - Symptoms due to splenomegaly
 - Infections, thrombosis, bleeding
 - Gout
 - Physical examination:
 - Mild to moderate splenomegaly
 - Mild hepatomegaly
 - Rare to find lymphadenopathy except in terminal stages
 - Labs:
 - Elevated WBC’s
 - Elevated platelets
 - Normochromic, normocytic anemia
 - Basophilia
- The cytogenic hallmark t(9:22) in 95% of patients
- Accelerated phase:
 - Basophilia
 - Thrombocytopenia
 - Blasts between 10-20%
- Blastic phase:
 - Blasts >20%
 - Hypossegmented neutrophils (Petger-Het anomaly)
- Worsening of symptoms heralds progression (fever, weight loss, decreased response to treatment, and bone pain)
 - Treatment:
 - If not treated, converts into AML
 - Aims:
 - Reduce WBC: hematologic
 - Reduce gout
 - Target the molecular cause
 - Modalities:
 - Imatinib:
 - a targeted treatment; competitive inhibition of adenosine triphosphate binding site of the ABL kinase
 - 95% of patients achieved complete hematologic remission
 - 60% of patients achieved major cytogenic remission within few months
 - Side effects:
 - Main side effect is fluid retention, nauseam muscle cramps, diarrhea, and skin rashes
 - Myleosuppression is the most common hematological side effect
 - Stem cell transplant: the only definitive therapy
 - Others:
 - Gamma interferons
 - Chemotherapy
 - 2nd generation of tyrosine kinase inhibitors for failure or relapse
 - Bone marrow transplant for crisis
- Response to treatment:
 - We cannot detect any response beyond 5log (10^{12}-10^{7})
 - PCR is the most accurate
- Mechanism of resistance to treatment:
 - Gene amplification
- Mutation at the kinase site
- Enhanced expression of multi-drug exporter proteins
- Alternative signaling pathways

- AML:
 - Clues:
 - Adult
 - Auer bodies
 - DIC – M3
 - No TdT markers
 - Blast with or without leukocytosis. The form with leukocytosis is the most common
 - Common manifestations:
 - Anemia
 - Thrombocytopenia
 - Neutropenia
 - Extramedullary infiltration: lymph nodes, skin, CNS
 - Hyperviscosity → associated with neurological symptoms
 - Release of metabolites: DIC, gout, ARF
 - Classification:
 - FAB: French-American-British classification; it is a morphological classification
 - WHO classification
 - Cytogenetic
 - Prognosis based on cytogenetics:
 - Favorable: t(15,17), PML-PARA (M3), t(8;21), inv(16), t(16;16)
 - Intermittent: t(9;11)
 - Unfavorable: t(6;9), inv(3)/t(3,3), d(7), complex karyotype
 - Promyelocytic leukemia (M3)
 - Associated t(15;17) involving the retinoic acid receptor (RAR) gene
 - Good prognosis
 - Commonly associated with DIC
 - Prominent Auer bodies
 - Treatment:
 - In general: correct Hb before chemotherapy, treated with anthracyclin and RCA
 - M3:
 - Tretinoin (all trans retinoic acid (ATRA)); an oral drug that induces the differentiation of leukemic cells bearing the t(15,17). It is not effective in other forms of AML.
• Acute M3 patients are responsive to cytarabine and daunorubicin, but about 10% of patients treated with these drugs die from DIC induced by the release of granule components by dying tumor cells.

 ▪ Tretinoin:
 • No DIC
 • Causes retinoic acid syndrome (ATRA syndrome):
 o In the first three weeks of treatment
 o Characterized by fever, dyspnea, chest pain, pulmonary infiltrates, effusion and hypoxia
 o Treatment: steroids, chemotherapy, supportive measures
 o Mortality rate: 10%
 • Other side effects:
 o Nasal stuffiness
 o Dry, red skin
 o Transient increase in ALT, AST, bilirubin and triglycerides. They rarely require any attention during treatment

- ALL:
 o Clues:
 ▪ Young
 ▪ Pancytopenia and bone marrow failure
 ▪ Immature B cells
 ▪ Positive TdT markers
 ▪ Blast → acute
 ▪ Positive periodic acid-Schiff stain (due to glycogen rich vacuoles), but negative peroxidase and negative non-specific esterase
 ▪ Can present with acute leukemia syndrome
 o Classifications:
 ▪ Morphological (FAB)
 • L1 → 75%
 • L2 → 20%
 • L3 → 5%
 ▪ Immunological classification:
 • B lineage (80%)
 o Pro-B: CD19, TdT
 o Common: CD19, TdT, CD10
 o Pre-B: CD19, TdT, CD10, cyIg (cytoplasm Ig)
 o Mature B: CD19, TdT, CD10, cyIg, smIg (surface Ig)
 • T lineage:
- Pre-T: CD7, TdT
- Mature T: CD7, TdT, CD2

- Molecular abnormalities with prognostic importance:
 - Better prognosis:
 - Normal karyotype
 - Hyperdiploidy
 - Poor prognosis:
 - t(8;14)
 - t(4;11)
 - Very poor prognosis:
 - t(9;22); Philadelphia chromosome

- Risk classification in ALL:
 - Standard risk
 - High risk
 - Very high risk

- High risk ALL:
 - Pre-T
 - Pro-B
 - Age >35
 - WBC >30 in B-ALL; >100 in T-ALL

- Treatment:
 - Determinant:
 - Risk qualification
 - Immunophenotype of leukemic cells
 - Age and biological condition
 - Goal of treatment
 - Remission induction treatment in ALL:
 - Anti-neoplastic treatment:
 - Drugs: steroid, vincristine, asparaginase, cyclophosphamide
 - Duration: 4-8 weeks
 - 1-2 courses
 - CNS prophylaxis: via methotrexate intrathecally
 - Supportive care
 - Treatment of complications
 - Post remission therapy in standard risk ALL:
 - Maintenance: 6-mercaptopurine, methotrexate
 - Intensification treatment periodically
 - CNS prophylaxis
 - Post remission therapy in high risk ALL:
 - Intensification treatment
• Hematopoietic stem cell transplant
 • Treatment results:
 • Complete remission in 80-85% of adults, and 95-99% of children
 • Leukemia free survival in 30-40% of adults and 70-80% of children
 • Splenomegaly is unusual in acute leukemias

- Acute leukemias (ABCDEF)
 o Acute
 o Blast predominance
 o Children
 o Drastic course
 o Elderly
 o Fever

- Chronic leukemias:
 o Mature predominance
 o Middle age
 o Less drastic course
 o Usually no fever

- Summary of treatment:
 o ALL: vincristin, prednisone, laspraginase, anthracyclin
 o AML: anthracyclin, cytarabin
 o Acute pro-myelocytic leukemia: all trans retinoic acid
 o CLL: no treatment if asymptomatic; clorambucil and rituximab
 o CML: imatinib, gamma interferon
 o Hodgkin (IA, IB): radiotherapy
Lymphomas

- Common features:
 o Painless lymph node enlargement
 o B-symptoms (fever, night sweats, weight loss)
 o Compression symptoms secondary to enlarged lymph nodes
 o Extra-nodal involvement
 o Needs lymph node biopsy for diagnosis
 o Each have different histology types
 o Both have similar staging systems

- Non-Hodgkin lymphoma (NHL):
 o Each type of lymphoma can be viewed as a lymphocyte arrested at a certain stage of development and transformed into a malignant cell
 o 85% are of a B-cell origin
 o 15%: T-cell or null all
 o Etiology:
 • Idiopathic: most common
 • Immune suppression:
 • Congenital (Wiskott Aldrich)
 • Organ transplant (cyclosporine)
 • AIDS
 • Aging
 • DNA repair defects:
 • Ataxia telangetasia
 • Xeroderma pigmentosa
 • Chronic inflammation and antigenic stimulation:
 • Helicobacter pylori- stomach
 • Chalmydia psittaci – ocular adnexia
 • Sjogren’s syndrome
 • Viral causes:
 • EBV and Burkitt lymphoma
 • HTLV-1 and T-cell leukemia
 • HTLV-V and cutaneous T cell lymphoma
 • Hepatitis C
 o Diagnosis:
 • Chromosome changes:
 • T(14:18) in follicular lymphoma (bcl oncogene)
 • T(8:14) and others in Burkitt lymphoma (c-myc oncogene)
 • T(11:14) in mantle cell lymphoma (cyclin D1 gene)
 o Staging:
Ann Arbor
- Same for NHL and HD
- I: 1 lymph node region or structure
- II: >1 lymph node region or structure; same side on diaphragm
- III: both sides of diaphragm
- IV: extra nodal sites, diffuse
- A: no systemic symptoms other than pruritis
- B: presence of B cell symptoms
- E: extra nodal extension

Revised European American lymphoma classification:
- Indolent: follicular
- Aggressive
- Very aggressive (Burkitt, lymphoblastic lymphoma)

- Frequency of NHL subtypes in adults:
 - 30% diffuse large B-cell
 - 20% follicular

- Prognostic factors in non-Hodgkin’s:
 - Adverse factors: age >60, stage III and IV
 - High serum LDH: indicating high turnover
 - Performance status (ECOG 2 or more)
 - More than one extra-nodal site involved

- Treatment options in advanced indolent lymphoma:
 - Observation only
 - Radiotherapy at the site of the problem
 - Systemic chemotherapy:
 - Oral agents: chlorambucil and prednisone
 - IV agents: CHOP, COP-R, FC-R
 - Anti-CD20: rituximab
 - Stem cell or bone marrow transplant

- Treatment options for aggressive lymphoma:
 - Potentially curable
 - Disseminate through blood stream: early
 - Must use systemic chemotherapy:
 - CHOP-R 8 cycles
 - CHOP-R 3 cycles followed by radiotherapy
 - Bone marrow transplant in some cases
 - CHOP-R: cycophosphamide, Hydroxydaunirubcin, vincristin, prednisone, Rituximab
 - Intrathecal chemotherapy for AIDS and CNS involvement
 - Radiotherapy for spinal cord compression and bulky disease
Hodgkin disease:
- With appropriate treatment about 85% of patients with Hodgkin’s disease are curable
- Treatment based on stage:
 - IA, IB: radiotherapy
 - IIA: chemotherapy + radiotherapy
 - IIB, IIIA, IIIB, IVA, IVB: chemotherapy with or without radiotherapy
- Chemotherapy (ABVD)
 - Adriamycin
 - Bleomycin
 - Vincristin
 - Dacarbazine

<table>
<thead>
<tr>
<th>HD</th>
<th>NHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reed strengberg cells</td>
<td>No Reed strengberg cells</td>
</tr>
<tr>
<td>Single group of axial LN</td>
<td>Multiple groups of peripheral LN</td>
</tr>
<tr>
<td>Contagious spread of LN</td>
<td>No contagious spread to LN</td>
</tr>
<tr>
<td>More constitutional symptoms</td>
<td>Less constitutional symptoms</td>
</tr>
<tr>
<td>Bimodal age (young and elderly)</td>
<td>20-40 year</td>
</tr>
</tbody>
</table>

When you encounter an enlarged tonsil in an adult, think of NHL

Reed Sternberg cells: binucleated cells with mirror image nuclei

Multiple myeloma:
- CRAB:
 - Elevated Ca
 - Renal failure
 - Anemia
 - Bone pain
- Clinical features
 - Symptoms related to bone marrow infiltration: bone pain, osteolytic lesions and fractures, anemia, and hypercalcemia
 - Symptoms related to secretion of abnormal proteins: renal, neurological, or visceral symptoms
 - Hyperviscosity syndrome
 - Recurrent infection
 - Amyloidosis
- Mnemonic (Buy CAVIAR)
 - Lytic bone lesion visible on X-ray
 - Hypercalcemia
 - Hyperviscosity especially common in the IgM secreting myeloma
 - Bacterial infection
 - Amyloidosis
Renal failure: occurs in 50% of patients because most of the light chains are toxic to the tubules

Work-up:
- CBC and blood film: roux formation
- ESR, Ca, creatinine
- Albumin
- Bone marrow biopsy and aspirate
- Serum proteins and electrophoresis and immune-fixation
- Skeletal survey: plain X-ray better than a bone scan because lytic lesions do not show well on a bone scan
- Quantitative immunoglobulins
- Bence Jones protein

Durie-Salmon staging system for multiple myeloma disease burden (tumor load)

Stage I:
- Hb >10
- Normal bone or solitary plasmacytoma
- Low immunoglobulin spike (M-component)
 - IgG < 5, IgA <3
 - Bence Jones protein <4g/24 hours

Stage II:
- IIA: normal renal function (Cr <2)
- IIB: abnormal renal function (Cr >2)

Stage III:
- Hb <8.5
- Serum Ca >12
- Multiple lytic bone lesions on X-ray
- High M component
 - IgG >7, IgA >5
 - Bence-Jone’s protein >12g/24 hours

International staging system:
- I: good prognosis:
 - Serum albumin >3.5 g/dL
 - Serum B2 microglobulin <3.5 mg/dL
- II: between I and III
- III: B2 microglobulin >5 mg/dL

Treatment:
- Standard chemotherapy:
 - Dexamethasone and thalidomide
 - Dexamethasone and Bortezomib (Velcade)
 - Melphalan and prednisone for elderly
- High dose chemotherapy:
 - Bone marrow transplant
 - Peripheral stem cell transplant
Myeloproliferative neoplasms

- Myeloid malignancies:
 - EML
 - AML
 - Polycythemia rubra vera (PRV)
 - Essential thrombocytopenia (ET)
 - Myelofibrosis (MF)
- PRV, ET, and MF: compose the chronic myeloproliferative disorders (CMPN)
- Common features of CMPN:
 - Each has specific diagnostic criteria, but they share some characteristics
 - Increased number of one or more myeloid cells
 - Splenomegaly
 - Hypercatabolism: weight loss and gout (AML)
 - Clonal marrow hyperplasia without dysplasia
 - Predispose to evolve into AML
 - Generalized pruritis (after bathing)
 - Unusual thrombosis (Budd Chiari syndrome)
- Polycythemia rubra vera:
 - Clinical features:
 - Palpable spleen
 - Enlarged liver
 - JAKII mutation
 - Elevated leukocyte alkaline phosphatase (LAP)
 - Bone marrow shows erythroid hyperplasia and increased number of megakaryocytes
 - EPO is not diagnostic but suggestive
 - 10% converts into AML
 - Diagnostic tools:
 - JAKII mutation
 - Normal or decreased erythropoietin
 - Increased RBC with normal saturation
 - Mutations in CMPN (due to activation of STAT3/5)
 - Gain of function in JAKII, MPL, CBL
 - Loss of function in LNK and NF1
 - JAKII:
 - Gain of function presents in:
 - 95% of PRV
 - 23-57% of ET
 - 43-57% of cases of MF
Risk classification:
- Low risk:
 - Age <60
 - No previous thrombosis
- High risk:
 - Age >60
 - Previous thrombosis

Diagnostic criteria for PRV (you need A1 + A2 with one more A criteria or 2 more B criteria)
- A criteria:
 - A1: raised RBC mass
 - A2: Normal O₂ saturation and EPO
 - A3: palpable spleen
 - A4: no BCR-ABL fusion (absent Philadelphia chromosome)
- B criteria:
 - B1: thrombocytosis >400 x 10⁹
 - B2: neutrophilia: >10 x 10⁹
 - B3: radiological splenomegaly
 - Endogenous erythroid colonies

Treatment of PRV:
- Phlebotomy (Hct <45%)
- Low dose aspirin
- Hydroxyurea or interferon gamma
- Busulphan in elderly
- Manage CVS risk factors
- Allopurinol
- Increased water intake

- Treatment of ET:
 - Hydroxyurea
 - Aspirin if microvascular disturbance
 - Manage cardiovascular risk

- Myelofibrosis:
 - Teardrop cells
 - Bone marrow shows hypercellularity with grade II fibrosis