FEMALE GENITAL SYSTEM & BREAST PATHOLOGY

Mousa Al-Abbadi, MD, FCAP, CPE, CPHQ, FIAC, ABMQ
Professor of Pathology & Cytopathology
University of Jordan
College of Medicine
MY DUTIES

• 8 lectures
• Simplify
• Understand the concepts
• Help U all Understand...understand...understand X 10...only then memorize and recall
• Answer questions & inquiries
• Respect
YOUR DUTIES

This Book is your main source of knowledge & EXAM QUESTIONS
YOUR DUTIES

• **ON TIME ATTENDANCE**
• Plz...plz...plz...NO CHATTING during lecture
• Understand first then memorize and recall
• Respect to the process
• **NO MOBILE**
• No inquiries about the nature of the exam...I tell you
PLEASE DON’T ASK THESE QUESTIONS AT ALL

• How many questions on my material?
• What should we concentrate on?
• Are the slides enough?
• Should we memorize this or that?
• Is this or that required?
[YOU SHOULD NOT ONLY STUDY FOR THE EXAM]
[YOU ARE NOT STUDYING FOR ME EITHER]
[YOU ARE LEARNING SO THAT YOU WILL BE A GOOD CARING & THOROUGH PHYSICIAN WHO WILL APPLY THE STNADRAD OF CARE]
REMEMBER

“Success in life is 90% hard work and 10% talent, luck and high IQ”
INTENDED LEARNING OBJECTIVES

• Recognize the common infections of the vulva & vagina
• Understand the pathogenesis of common vulvar and vaginal tumors
• Comprehend common infections of the cervix
• Grasp the details of HPV associated cervical carcinogenesis and the successful screening program
ILOs....continue

- Recognize and understand common uterine diseases and its clinicopathological features (endometritis, adenomyosis, endometriosis, abnormal uterine bleeding)
- Absorb the common benign proliferative & neoplastic uterine diseases (leiomyoma, polyps, endometrial hyperplasia).
- Recognize common endometrial malignancies and its pathogenesis (endometrial carcinoma, leiomyosarcoma & MMT)
Recognize the pathology of ovarian and fallopian tube cysts and its diagnostic features

Understand the clinicopathological characteristics of polycystic ovarian syndrome

Identify common ovarian tumors and recognize their clinicopathological features

Grasp common benign diseases of placenta (infections, ectopic pregnancy)
• Understand the concept of gestational trophoblastic diseases (molar pregnancy, invasive mole, choriocarcinoma and placental site trophoblastic tumor)

• Recognize and understand the pathogenesis of preeclampsia and eclampsia (Toxemia of pregnancy)
ILOs....continue

• Recognize the variable clinical presentations of breast diseases
• Brief grasp of common inflammatory breast processes
• Understand the concept of stromal breast neoplasms
• Recognize the pathology of benign breast epithelial tumors
• Understand the details of mammary carcinoma pathogenesis (epidemiology, risk factors, and clinicopathological features)
BREAST PATHOLOGY
FIG. 19.22 Origins of breast disorders. Benign epithelial lesions include intraductal papilloma, DCIS, and invasive carcinoma. Malignant lesions include phylloides tumor, angiosarcoma, and hemangioma.
FIG. 19.23 Presenting symptoms of breast disease. (A) Common breast-related symptoms. (B) Presentations of breast cancers.
CLINICAL PRESENTATIONS OF BREAST DISEASES:

- Pain
- Inflammation (edema and erythema)
- Nipple discharge (bloody is serious)
- “Lumpiness”
- Palpable masses
- Gynecomastia (males)
FACTS

• Likelihood of malignancy increase with age
• Mammography was introduced in the 1980s to detect asymptomatic breast cancer cases (It did), now smaller (1 cm) cancers are found
• Palpable Ca breast (2-3 cm)
• Abnormal mammogram: increase likelihood of cancer with increase in age
INFLAMMATORY PROCESSES:

• Infections, autoimmune diseases, and F. Body type reactions.

• Lactational infections (mastitis, staph) may be complicated by abscess formation which needs surgical drainage
STROMAL NEOPLASMS:

<table>
<thead>
<tr>
<th>FIBROADENOMA</th>
<th>PHYLLODES TUMORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Biphasic tumor</td>
<td>- Stroma >>> epithelia</td>
</tr>
<tr>
<td>- Low cellularity</td>
<td>- Stromal hypercellularity</td>
</tr>
<tr>
<td>- Slit-like glands</td>
<td>- Leaf-like appearance (phylloides = Greek for leaf)</td>
</tr>
<tr>
<td>- Well-circumscribed mass, mobile (breast mouse)</td>
<td>- Not well-circumscribed</td>
</tr>
<tr>
<td>- Young age, Always benign</td>
<td>- Older age, can be high grade and malignant</td>
</tr>
<tr>
<td>- Surgical removal (anxiety relief and rule out malignancy)</td>
<td>- Surgical removal with safe margin (avoid recurrence)</td>
</tr>
</tbody>
</table>
FIBROADENOMA FEATURES:
PHYLLODES TUMOR FEATURES
Subclassification of Phyllodes Tumors

<table>
<thead>
<tr>
<th></th>
<th>Benign</th>
<th>Borderline</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitoses/10 hpfs</td>
<td>0-3</td>
<td>4-9</td>
<td>10 or more</td>
</tr>
<tr>
<td>Stromal cellularity/atypia</td>
<td>mild</td>
<td>moderate</td>
<td>marked</td>
</tr>
<tr>
<td>Stromal overgrowth</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Tumor interface</td>
<td>circumscribed</td>
<td>circumscribed or infiltrative</td>
<td>infiltrative</td>
</tr>
</tbody>
</table>
BENIGN EPITHELIAL LESIONS:

- Non-proliferative disease: Cysts and fibrocystic changes; no increased risk of malignancy

- Proliferative disease without atypia: usual-type epithelial hyperplasia, no atypia; slight increased risk of malignancy 5-6% life time risk

- Proliferative disease with atypia: ADH and ALH, atypia present; modest increased risk of malignancy 13-17% life time risk
<table>
<thead>
<tr>
<th>Factor</th>
<th>Relative Risk</th>
<th>Absolute Lifetime Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with no risk factors</td>
<td>1.0</td>
<td>3%</td>
</tr>
<tr>
<td>First-degree relative(s) with breast cancer</td>
<td>1.2–9.0</td>
<td>4%–30%</td>
</tr>
<tr>
<td>Germline tumor suppressor gene mutation (e.g., BRCA1 mutation)</td>
<td>2.0–45.0</td>
<td>6% to >90%</td>
</tr>
</tbody>
</table>

Menstrual History

| Age at menarche <12 years | 1.3 | 4% |
| Age at menopause >55 years | 1.5–2.0 | 5%–6% |

Pregnancy

First live birth <20 years (protective)	0.5	1.6%
First live birth 20–35 years	1.5–2.0	5%–6%
First live birth >35 years	2.0–3.0	6%–10%
Never pregnant (nulliparous)	3.0	10%
Breast-feeding (slightly protective)	0.8	2.6%

Benign Breast Disease

Proliferative disease without atypia	1.5–2.0	5%–6%
Proliferative disease with atypia (ALH and ADH)	4.0–5.0	13%–17%
Carcinoma in situ (ductal or lobular)	8.0–10.0	25%–30%
Ionizing radiation	1.1–1.4	3.6%–4.6%
Mammographic density	3.0–7.0	10%–23%
Postmenopausal obesity and weight gain	1.1–3.0	3.6%–10%
Postmenopausal hormone replacement	1.1–3.0	3.6%–10%
Alcohol consumption	1.1–1.4	3.6%–4.6%
MAMMARY CARCINOMA:

• Most common women malignancy (excluding non-melanotic skin cancer)

• Incidence stable in USA; however, the incidence and mortality is increasing world-wide due to:
 – Delayed childbearing
 – Fewer pregnancies
 – Reduced breast feeding
 – No access to proper healthcare
MAMMARY CARCINOMA:

- Lifetime risk 1/8 (USA)
- Cancer death; 2nd after lung
- Mortality decreases from 30 to 20% due to:
 - Better screening
 - Diagnosing more early stage
 - Better treatment
CLASSIFICATIONS OF MAMMARY CARCINOMA:
<table>
<thead>
<tr>
<th>Feature</th>
<th>ER Positive/HER2 Negative</th>
<th>HER2 Positive (ER Positive or Negative)</th>
<th>Triple Negative (ER, PR, and HER2 Negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall frequency</td>
<td>50%–65%</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Typical patient groups</td>
<td>Older women; men;</td>
<td>Young women; germline TP53</td>
<td>Young women; germline BRCA1 mutation carriers</td>
</tr>
<tr>
<td></td>
<td>cancers detected by</td>
<td>carriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>screening; germline BRCA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mutation carriers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European/American</td>
<td>70%</td>
<td>18%</td>
<td>12%</td>
</tr>
<tr>
<td>African/American</td>
<td>52%</td>
<td>22%</td>
<td>26%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>60%</td>
<td>24%</td>
<td>16%</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>63%</td>
<td>26%</td>
<td>11%</td>
</tr>
<tr>
<td>Grade</td>
<td>Mainly grade 1 and 2</td>
<td>Mainly grade 2 and 3</td>
<td>Mainly grade 3</td>
</tr>
<tr>
<td>Complete response to</td>
<td>Low grade (~10%), higher</td>
<td>ER positive (15%), ER</td>
<td></td>
</tr>
<tr>
<td>chemotherapy</td>
<td>grade (10%)</td>
<td>negative (~30%)</td>
<td></td>
</tr>
<tr>
<td>Timing of relapse</td>
<td>May be late (>10 years</td>
<td>Usually short (~10 years after</td>
<td>Usually short (~8 years after diagnosis)</td>
</tr>
<tr>
<td></td>
<td>after diagnosis)</td>
<td>diagnosis)</td>
<td></td>
</tr>
<tr>
<td>Metastatic sites</td>
<td>Bone (70%), viscera</td>
<td>Bone (70%), viscera (45%), brain</td>
<td>Bone (40%), viscera (35%), brain (25%)</td>
</tr>
<tr>
<td></td>
<td>(25%), brain (~10%)</td>
<td>(30%)</td>
<td></td>
</tr>
<tr>
<td>Similar group defined by</td>
<td>Luminal A (low grade),</td>
<td>Luminal B (ER positive), HER2-enriched</td>
<td>Basal-like</td>
</tr>
<tr>
<td>mRNA profiling</td>
<td>luminal B (high grade)</td>
<td>(ER negative)</td>
<td></td>
</tr>
<tr>
<td>Common special histologic</td>
<td>Lobular, tubular,</td>
<td>Apocrine, micropapillary</td>
<td>Carcinoma with medullary features</td>
</tr>
<tr>
<td>types</td>
<td>mucinous, papillary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common somatic mutations</td>
<td>PIK3CA (40%), TP53 (26%)</td>
<td>TP53 (75%), PIK3CA (40%)</td>
<td>TP53 (85%)</td>
</tr>
</tbody>
</table>

PIK3CA encodes phosphoinositide 3-kinase (PI3K).
FIG. 19.26 Age and the incidence of breast cancer subtypes.
CLASSIFICATION BY GENE EXPRESSION PROFILING

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMINAL A</td>
<td>LOWER GRADE, ER +VE, HER-2-NEU -VE</td>
</tr>
<tr>
<td>LUMINAL B</td>
<td>HIGHER GRADE, ER+VE, HER-2-NEU +VE</td>
</tr>
<tr>
<td>HER-2-ENRICHED</td>
<td>HER-2-NEU +VE, ER-VE</td>
</tr>
<tr>
<td>BASAL-LIKE</td>
<td>HER-2-NEU -VE, ER-VE</td>
</tr>
</tbody>
</table>
EPIDEMIOLOGY & RISK FACTORS

• 1. Age and gender
• 2. Family history
• 3. Geography (diet, late pregnancy, breast feeding)
• 4. Race and ethnicity (ER+ve European; worse cancers in hispanic and AA and at younger age)
• 5. Reproductive hx. (early menarche, nulliparity, no breast feeding, older age at pregnancy)...more Estrogenic effect
• 6. Ionizing radiation at younger age
• 7. Other factors: post M obesity, HRT, Mammographic density, alcohol consumption
PATHOGENESIS:

- GENETIC FACTORS
- HORMONAL FACTORS
- ENVIRONMENTAL FACTORS

ER & TAMOXIFEN

JAPAN & USA
FIG. 19.27 Major pathways of breast cancer development. The most common pathway...
CLASSIFICATION UNDER THE MICROSCOPE (MORPHOLOGICAL CLASSIFICATION):

<table>
<thead>
<tr>
<th>NON-INVASIVE CARCINOMA</th>
<th>INVASIVE CARCINOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ductal carcinoma in situ (DCIS)</td>
<td>Invasive ductal carcinoma (IDC) 70-80%</td>
</tr>
<tr>
<td>Lobular carcinoma in situ (LCIS)</td>
<td>Invasive lobular carcinoma (ILC) 10-15%</td>
</tr>
<tr>
<td></td>
<td>Medullary carcinoma 5%</td>
</tr>
<tr>
<td></td>
<td>Colloid (mucinous carcinoma) 5%</td>
</tr>
<tr>
<td></td>
<td>Tubular carcinoma 5%</td>
</tr>
<tr>
<td></td>
<td>Other types</td>
</tr>
</tbody>
</table>

![Diagram](image)

Fig 2: Normal cells lining a milk duct may develop into DCIS; sometimes this will progress to invasive cancer.
INVASIVE CARCINOMA

FIG. 19.29 Growth patterns of invasive breast carcinomas. (A) Most grow as tub...
PAGET DISEASE OF THE NIPPLE:

- Spread of carcinoma cells into nipple ducts and skin
GRADING OF BREAST CANCER: 1-3 SCORE (GLANDS, NUCLEI & MITOSIS)

<table>
<thead>
<tr>
<th>Total Feature Score</th>
<th>Tumor Grade</th>
<th>Appearance of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>Grade 1 Tumor</td>
<td>Well-differentiated (appear normal, growing slowly, not aggressive)</td>
</tr>
<tr>
<td>6-7</td>
<td>Grade 2 Tumor</td>
<td>Moderately-differentiated (semi-normal, growing moderately fast)</td>
</tr>
<tr>
<td>8-9</td>
<td>Grade 3 Tumor</td>
<td>Poorly-differentiated (abnormal, growing quickly, aggressive)</td>
</tr>
</tbody>
</table>

Grade 1

Grade 2

Grade 3
CLINICAL FEATURES:

• Unscreened: palpable mass, 2-3 cm, 50% spread to regional lymph nodes

• Screened; 60% of cancer discovered before symptoms; 20% are in situ carcinomas.

• IC in screened are 1-2 cm, 15% spread to LN at time of dx.

• “Interval cancers”: palpable discovered between screening intervals (high grade)

• Behavior depends on: Molecular, morphological and stage of cancer at time of dx
CLINICAL OUTCOME OF BREAST CANCER DEPENDS ON:

• Biologic type:
 – Grade and hormonal studies (targeted therapy)

• RNA expression profiling (identify slow growing ER +ve cancers to avoid toxic CT)

• Tumor stage: measure of extent of tumor. TNM staging system at time of dx: T: tumor size. N: number of nodes involved. M: presence of distant metastasis
TNM CATEGORIES:

Triple-negative & Her-2-Neu +ve breast cancers are more likely to metastasize to brain and viscera.

ER +ve cancers: are more likely to metastasize to bone.

Table 1: Breast Cancer T, N, and M Categories

<table>
<thead>
<tr>
<th>Primary Tumor (T):</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX: Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0: No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis: Carcinoma in situ (DCIS, LCIS, or Paget’s disease of the nipple with no tumor mass)</td>
</tr>
<tr>
<td>T1: Tumor is ≤2 cm</td>
</tr>
<tr>
<td>T2: Tumor is >2 cm but ≤5 cm</td>
</tr>
<tr>
<td>T3: Tumor is >5 cm</td>
</tr>
<tr>
<td>T4: Tumor of any size growing into the chest wall or skin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymph Node Status (N):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX: Nearby lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0: Cancer has not spread to nearby lymph nodes</td>
</tr>
<tr>
<td>N1: Cancer has spread to 1 to 3 axillary lymph nodes, and/or tiny amounts of cancer are found in internal mammary lymph nodes on sentinel lymph node biopsy</td>
</tr>
<tr>
<td>N2: Cancer has spread to 4 to 9 axillary lymph nodes under the arm, or cancer has enlarged the internal mammary lymph nodes</td>
</tr>
<tr>
<td>N3: One of the following applies:</td>
</tr>
<tr>
<td>- Cancer has spread to 10 or more axillary lymph nodes</td>
</tr>
<tr>
<td>- Cancer has spread to the lymph nodes under the clavicle</td>
</tr>
<tr>
<td>- Cancer has spread to the lymph nodes above the clavicle</td>
</tr>
<tr>
<td>- Cancer involves axillary lymph nodes and has enlarged the internal mammary lymph nodes</td>
</tr>
<tr>
<td>- Cancer involves 4 or more axillary lymph nodes, and tiny amounts of cancer are found in internal mammary lymph nodes on sentinel lymph node biopsy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metastases (M):</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX: Presence of distant metastases cannot be assessed</td>
</tr>
<tr>
<td>M0: No distant spread</td>
</tr>
<tr>
<td>M1: Spread to distant organs is present</td>
</tr>
</tbody>
</table>

Source: References 6, 12, 21.
<table>
<thead>
<tr>
<th>Stage</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Stage 0 is carcinoma *in situ* | Tumors that have not grown beyond their site of origin and invaded the neighboring tissue. They include:
- ductal carcinoma *in situ*
- lobular carcinoma *in situ* |
| Stage 1 | Tumor size <2 cm, metastases to other organs and tissues not available |
| Stage 2a | Tumor <2 cm in cross-section with involvement of the lymph node or tumor from 2 to 5 cm without involvement of the axillary lymph nodes |
| Stage 2b | Tumor more than 5 cm in cross-section (the result of axillary lymph node research is negative for cancer cells) or tumor from 2 to 5 cm in diameter with the involvement of axillary lymph nodes |
| Stage 3a | Also called local spread of breast cancer: tumor more than 5 cm with spread to axillary lymph nodes or tumor of any size with metastases in axillary lymph nodes, which are knitted to each other or with the surrounding tissues |
| Stage 3b | Tumor of any size with metastases into the skin, chest wall or internal lymph nodes of the mammary gland (located below the breast inside of the chest) |
| Stage 3c | Tumor of any size with a more widespread metastases and involvement of more lymph nodes |
| Stage 4 | Defined as the presence of tumors (regardless of the sizes), spread to parts of the body that are located far removed from the chest (bones, lungs, liver, brain or distant lymph nodes) |

FIG. 19.30 Ten-year breast cancer specific survival according to AJCC stage for ER-p...
FIG. 19.31 Time to recurrence of breast cancers. The hazard ratio reflects the risk of recurrence. The graph shows the annual hazard rate for breast cancer death (%) over time after initial breast cancer diagnosis (years) for ER (estrogen receptor) negative and ER positive cases.
<table>
<thead>
<tr>
<th>Feature</th>
<th>ER Positive/HER2 Negative</th>
<th>HER2 Positive (ER Positive or Negative)</th>
<th>Triple Negative (ER, PR, and HER2 Negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall frequency</td>
<td>50%–65%</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Typical patient groups</td>
<td>Older women; men; cancers detected by screening; germline \textit{BRCA2} mutation carriers</td>
<td>Young women; germline \textit{TP53} mutation carriers</td>
<td>Young women; germline \textit{BRCA1} mutation carriers</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European/American</td>
<td>70%</td>
<td>18%</td>
<td>12%</td>
</tr>
<tr>
<td>African/American</td>
<td>52%</td>
<td>22%</td>
<td>26%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>60%</td>
<td>24%</td>
<td>16%</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>63%</td>
<td>26%</td>
<td>11%</td>
</tr>
<tr>
<td>Grade</td>
<td>Mainly grade 1 and 2</td>
<td>Mainly grade 2 and 3</td>
<td>Mainly grade 3</td>
</tr>
<tr>
<td>Complete response to chemotherapy</td>
<td>Low grade (<10%), higher grade (10%)</td>
<td>ER positive (15%), ER negative (>30%)</td>
<td></td>
</tr>
<tr>
<td>Timing of relapse</td>
<td>May be late (>10 years after diagnosis)</td>
<td>Usually short (<10 years after diagnosis)</td>
<td>Usually short (<8 years after diagnosis)</td>
</tr>
<tr>
<td>Metastatic sites</td>
<td>Bone (70%), viscera (25%), brain (<10%)</td>
<td>Bone (70%), viscera (45%), brain (30%)</td>
<td>Bone (40%), viscera (35%), brain (25%)</td>
</tr>
<tr>
<td>Similar group defined by mRNA profiling</td>
<td>Luminal A (low grade), luminal B (high grade)</td>
<td>Luminal B (ER positive), HER2-enriched (ER negative)</td>
<td>Basal-like</td>
</tr>
<tr>
<td>Common special histologic types</td>
<td>Lobular, tubular, mucinous, papillary</td>
<td>Apocrine, micropapillary</td>
<td>Carcinoma with medullary features</td>
</tr>
<tr>
<td>Common somatic mutations</td>
<td>\textit{PIK3CA} (40%), \textit{TP53} (26%)</td>
<td>\textit{TP53} (75%), \textit{PIK3CA} (40%)</td>
<td>\textit{TP53} (85%)</td>
</tr>
</tbody>
</table>

\textit{PIK3CA} encodes phosphoinositide 3-kinase (PI3K).
<table>
<thead>
<tr>
<th>Target</th>
<th>Treatment</th>
<th>Assay</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER</td>
<td>Estrogen deprivation (oophorectomy, aromatase inhibitors) Blockage of ER (tamoxifen)</td>
<td>IHC for nuclear ER</td>
<td>Effective cytostatic (but not cytotoxic) therapy for ER-positive cancer</td>
</tr>
<tr>
<td>HER2</td>
<td>Antibodies to HER2 Cytotoxic therapy linked to HER2 antibody Tyrosine kinase inhibitors</td>
<td>IHC for membrane HER2 ISH for HER2 gene amplification</td>
<td>Effective for HER2-positive cancers</td>
</tr>
<tr>
<td>Susceptibility to DNA damage resulting from BRCA1 and BRCA2 mutations that cause defects in HRR</td>
<td>Chemotherapy with agents causing DNA damage that requires HRR (e.g., platinum agents) Inhibition of alternative DNA repair pathway (poly-ADP ribose polymerase or PARP inhibitors)</td>
<td>Sequencing of BRCA1 and BRCA2</td>
<td>May be effective for carcinomas arising in patients with germline BRCA1 or 2 mutations or cancers with somatic loss of BRCA function</td>
</tr>
<tr>
<td>PI3K/AKT pathway</td>
<td>Inhibition of proteins in the pathway</td>
<td>Activating mutations or pathway activation—not yet validated</td>
<td>>80% of breast cancers have alterations in this pathway Effectiveness of treatment not yet demonstrated</td>
</tr>
<tr>
<td>Immune checkpoint proteins</td>
<td>Blocking antibodies to PD-L1, PD-1, and other immune checkpoint proteins</td>
<td>IHC for immune checkpoint proteins—not yet validated</td>
<td>Under investigation in patients with triple-negative breast cancer</td>
</tr>
</tbody>
</table>

ER, Estrogen receptor; HRR, homologous recombination repair; IHC, immunohistochemistry; ISH, in situ hybridization.
FINAL COMMENTS:

• Combining stage and biologic factors are better predictors of outcome
• Women with untreated breast cancer die within 3-4 years
• 80% of women who receive optimal treatment survive
• Early detection and easy access to optimal care are key factors
FEMALE GENITAL TRACT PATHOLOGY
VULVA:

• Most diseases are inflammatory; tumors are rare.
• Uncomfortable and annoying rather than serious
• Vulvitis:
 – Dermatitis, contact and allergic
 – Infections: STDs such as HPV (condyloma accuminatum & VIN); HSV, *N. Gonorrhoea*, *Treponema pallidum*. Candida (not STD)
 – Infection may obstruct glands and cause “Bartholin cyst”
NON-NEOPLASTIC EPITHELIAL DISORDERS:

<table>
<thead>
<tr>
<th>LICHEN CHRONICUS</th>
<th>LICHEN SIMPLEX CHRONICUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leukoplakia “white plaque”</td>
<td>• Leukoplakia “white plaque”</td>
</tr>
<tr>
<td>• Postmenopausal & prepuberty</td>
<td>• Chronic irritation, pruritis due to other inflammatory dermatoses</td>
</tr>
<tr>
<td>• Etiology: ? T cell, ? Autoimmune</td>
<td>• No increased risk for cancer</td>
</tr>
<tr>
<td>• 1-5% of symptomatic LS may develop HPV –ve SQ.C Carcinoma</td>
<td>• Hyperplastic epithelium</td>
</tr>
<tr>
<td>• Atrophic epithelium</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 19.1 Nonneoplastic vulvar epithelial disorders. (A) Lichen sclerosus. There is mark...
CONDYLOMA ACCUMINATUM:

- Wart “ثؤلول”
- HPV 6 & 11
- Elevated white plaques
- “Koilocytosis”
- No progression to cancer
CARCINOMA OF VULVA:
90% SQUAMOUS CELL CARCINOMA

<table>
<thead>
<tr>
<th>HPV related</th>
<th>HPV –ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Leukoplakia</td>
<td>• Leukoplakia</td>
</tr>
<tr>
<td>• HPV 16 & 18</td>
<td>• HPV –ve</td>
</tr>
<tr>
<td>• Middle aged women</td>
<td>• Older women > 60</td>
</tr>
<tr>
<td>• Cigarette smoking and immunodeficiency (AIDs)</td>
<td>• Unifocal</td>
</tr>
<tr>
<td>• VIN (vulvar intraepithelial neoplasia)</td>
<td>• Well-differentiated</td>
</tr>
<tr>
<td>• Poorly differentiated, multifocal</td>
<td>• Depth of invasion and lymph node mets are important px. Factors (stage)</td>
</tr>
<tr>
<td>• Depth of invasion and lymph node mets are important px. Factors (stage)</td>
<td></td>
</tr>
</tbody>
</table>

Factors (stage)
PAGET DISEASE OF VULVA

- Carcinoma cells in the epidermis
- Red scaly crusted plaque
- Minority will have underlying carcinoma “adenocarcinoma”, mucin +ve (in contrast to mammary Paget, almost all have underlying carcinoma)
- Poor px. when metastasis are present

![Image of Paget disease of vulva]
VAGINAL PATHOLOGY:

- Rarely involved by primary disease; more secondary (infections and tumors)
- Congenital anomalies are rare: septate or double vagina part of septate uterus; congenital lateral Gartner duct cyst (persistent Wollfian duct rests)
VAGINITIS:

- Common transient infections
- Candida infections (monilial) vaginitis: common in DM, pregnancy, with AB use and immunodeficiency. “White thrush”
- *Trichomonas vaginalis*: parasitic infection, STD, watery, copious gray-green discharge, can be seen on vaginal (& cervical Pap smears)
PAPANICOLAOU SMEAR:

CANDIDA

T. VAGINALIS
MALIGNANT NEOPLASMS:

- Very rare
- Squamous cell Ca: HPV & VAIN associated
- Clear cell adenocarcinoma: with vaginal adenosis triggered by the use of Diethylstilbestrol during pregnancy for threatened abortion (1970s)
- Sarcoma botryoides; embryonal rhabdomyosarcoma in children (< 5 years)
CERVIX PATHOLOGY:

• Cervicitis, cervical polyps and cervical cancer
• Cervicitis: common, infectious and noninfectious
• Infectious: STDs; *Chlamydia Trachomatis* (most common), *Ureaplasma urealyticum*, *T. vaginalis*, *N. gonorrhoea*, HSV2 and HPV
• Pap smear detection after discharge
• HSV infection may affect babies if vaginal delivery
CERVICAL NEOPLASIA:

- Transformation zone (squamocolumnar junction); most common area
- Mostly are HPV associated squamous cell carcinoma
- HPV tropism for immature sq epithelium
- Cervical intraepithelial neoplasia or squamous intraepithelial neoplasia (old name: dysplasia)
RISK FOR CERVICAL CANCER:

- Early age of first intercourse
- Multiple sexual partners
- Male partner with multiple partners
- Persistent infection with high risk HPV serotypes (HPV 16 & 18)
- HPV resides in the DNA of squamous epithelium and replicates
Fig. 19.4 Cervical transformation zone showing the transition from mature glycogenated...
Possible consequences of human papillomavirus (HPV) infection. Progression to invasive cancer can occur through multiple pathways, including high-risk HPV infection leading to SIL, hSIL, and finally invasive cancer.
HPV CARCINOGENESIS:

- E7 (Inhibits pRB)
 - Deregulation of cellular proliferation
- E6
 - Blocks apoptosis (p53 degradation)
 - Outgrowth of deregulated cells

Apoptosis induction

Elimination
Fig. 19.6 Spectrogram of squamous intraepithelial lesions (SIL) with normal squa...

Fig. 19.7 Cytologic features of squamous intraepithelial lesion (SIL) in a Papain...
NATURAL HISTORY OF HPV INFECTION:

TABLE 19.1 Natural History of Squamous Intraepithelial Lesions (SILs)

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Regress</th>
<th>Persist</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSIL (CIN I)</td>
<td>60%</td>
<td>30%</td>
<td>10% (to HSIL)</td>
</tr>
<tr>
<td>HSIL (CIN II, III)</td>
<td>30%</td>
<td>60%</td>
<td>10% (to carcinoma)^a</td>
</tr>
</tbody>
</table>

LSIL, Low-grade SIL; HSIL, high-grade SIL.
EARLY DETECTION AND THE PAP TEST:

• The pap smear remains the most successful cancer-screening test ever developed
• Now, cancer death from cervix dropped dramatically (not of top ten)
• Smear (specific) morphology and HPV DNA (sensitive) testing are now used (co-testing)
• HPV vaccines: quadrivalent (HPV 6, 11, 16, 18) and more (divalent and 9 valent); are promising preventive measures
HGSIL DETECTION & TREATMENT:

• The pap test (smear and HPV DNA test) is essential to detect early lesions before invasive carcinoma

• Specific guidelines are in place: colposcopy to see the lesions and biopsy them

• Confirm HGSIL by histology

• LEEP or cone excision of lesions
Cone excision

Normal
Cancer

Low-grade CIN High-grade CIN

LEEP procedure
Before LEEP removal after - cervical crater

Cone excision
INVASIVE CERVICAL CARCINOMA:

• Squamous (75%), adenocarcinoma & adenosquamous (20%), and small cell NEC
• All are HPV associated
• Increase incidence of adenocarcinoma (better screening and early detection of squamous)
• SqCC peak at age 45 (10-15 years after HPV infection)
• Risk factors for invasion: smoking and HIV
INVASIVE CERVICAL CANCER:

- Often seen in unscreened women: vaginal bleeding, leukorrhea, and dyspareunia
- Biopsy dx needed before planning trx.
- Grading and depth of invasion are important predictors of stage and prognosis
- Depth of invasion 3 mm or more
- Spread: pelvic lymph nodes and surrounding structures
- Trx: radical hysterectomy + lymph node dissection, RT and CT
UTERINE PATHOLOGY:

• Endometritis: acute (neutrophilic) or chronic (plasma cells)
• Can be part of pelvic inflammatory disease (N. gonorrhoeae or C. trachomatis)
• TB: granulomatous endometritis in endemic countries (+ TB salpingitis) or immunocompromised patients
• Retained POC and IOUCD associated
• Fever, abdominal pain and menstrual abnormalities
• Dx and trx: biopsy and antibiotics (removal of IUCD and POC)
ADENOMYOSIS:

• Endometrial tissue deep in myometrium
• Functional tissue causing hypertrophy
• When extensive: menorrhagia, dysmenorrhea and pelvic pain (specially before menses)
• Can co-exist with endometriosis
ENDOMETRIOSIS:

- Endometrial glands and stroma outside uterus
- Any where and multifocal: but common locations are ovaries, pouch of Douglas, uterine ligaments, cervix, tubes and rectovaginal septum).

- Theories:
 - Regurgitation (favored)
 - Benign metastases
 - Metaplasia
 - Extrauterine stem cell differentiation
FIG. 19.9 Proposed origins of endometriosis.
ENDOMETRIOSIS CLINICALLY

- 10% of women in reproductive age and 50% of infertile women
- S&S: depends on distribution and location
- Scarring of tubes and ovaries; pain and discomfort, infertility [red dots]
- Rectal (painful defecation), uterine and bladder serosa (dyspareunia and dysuria)
- Severe dysmenorrhea, pelvic pain (bleeding and adhesions)
- Trx: complex (surgical and / or medical)
ABNORMAL UTERINE BLEEDING (AUB):

• Very common complaint for women
• Menorrhagia (heavy and / or long periods), metrorrhagia (irregular bleeding) or post menopausal bleeding

• Causes:

<table>
<thead>
<tr>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysfunctional uterine bleeding (DUB)</td>
</tr>
<tr>
<td>Endometrial polyps</td>
</tr>
<tr>
<td>Leiomyomas (fibroids)</td>
</tr>
<tr>
<td>Endometrial hyperplasia</td>
</tr>
<tr>
<td>Endometrial carcinoma</td>
</tr>
<tr>
<td>Age Group</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Prepuberty</td>
</tr>
<tr>
<td>Adolescence</td>
</tr>
<tr>
<td>Reproductive age</td>
</tr>
<tr>
<td>Perimenopause</td>
</tr>
<tr>
<td>Postmenopause</td>
</tr>
</tbody>
</table>
DYSFUNCTIONAL UTERINE BLEEDING (DUB):

• Very common
• Abnormal bleeding with no organic uterine cause
• Many due to anovulation around menarche and perimenopause because of hormonal imbalances
• Less common causes: endocrine diseases; ovarian tumors (GCT) and PCOS, obesity, malnutrition, chronic diseases, inadequate luteal phase
PROLIFERATIVE LESIONS OF ENDOMETRIUM AND MYOMETRIUM:

- Endometrial polyps
- Leiomyomas “fibroids”
- Endometrial hyperplasia
- Endometrial carcinoma
ENDOMETRIAL POLYPS:

• Common finding in endometrial curettings
• Cause abnormal uterine bleeding
• Almost all are benign
• Most common around menopause
LEIOMYOMAS “FIBROIDS”:

- Benign smooth muscle tumor of myometrium
- Most common tumors of females, 30-50% of women in reproductive age, > in Blacks
- Chromosomal abnormalities (Ch 6 and 12 rearrangements) and MED12 gene mutations
- Grow with estrogens and OCP and shrink postmenopausally
- Asymptomatic; menorrhagia
PATHOLOGIC FEATURES:
ENDOMETRIAL HYPERPLASIA:

- Excess estrogen in relation to progestins
- Causes: obesity, anovulation, unopposed estrogen intake, estrogen producing ovarian tumors

<table>
<thead>
<tr>
<th>Hyperplasia without atypia</th>
<th>Hyperplasia with atypia (EIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No atypical cellular features</td>
<td>- Atypical cellular features present</td>
</tr>
<tr>
<td>- Less complex, more cystic</td>
<td>- More complex glands</td>
</tr>
<tr>
<td>- Risk of carcinoma is 1-3%</td>
<td>- Risk of carcinoma is 20-50%</td>
</tr>
<tr>
<td>- No PTEN tumor suppressor gene abnormalities</td>
<td>- Inactivation of PTEN tumor suppressor gene</td>
</tr>
</tbody>
</table>
Disordered proliferative endometrium

Hyperplasia without atypia

Atypical hyperplasia
ENDOMETRIAL CARCINOMA:

• Most frequent cancer in FGT
• Age: 55-65 years
• 2 main types:
 – 1. Endometrioid carcinoma (80%)
 – 2. Serous carcinoma (15%)
• Others less common: clear cell Ca and MMT (carcinosarcoma)
ENDOMETRIOID CARCINOMA:

- Histology similar to normal endometrium
- Risk factors: Obesity, HT, DM, infertility, & unopposed estrogen exposure
- Associated and preceded by atypical hyperplasia
- Mutations:
 - Early: mismatch DNA repair genes (Lynch syndrome) and PTEN tumor suppressor gene (Cowden syndrome)
 - Late: TP53, less common and late event
MORPHOLOGY & FIGO GRADE
ENDOMETRIOID CARCINOMA
SEROUS CARCINOMA:

- Serous is serious “Dr. Samir Amr”, aggressive carcinoma
- Not associated with hyperplasia or unopposed estrogen exposure
- Mutations in TP53
- Maybe preceded by serous endometrial intraepithelial carcinoma (SIEC) with TP53 mutations
MORPHOLOGY: SEROUS CARCINOMA

P53
FIGO STAGING:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tumor contained to the corpus uteri</td>
</tr>
<tr>
<td>IA</td>
<td>No or less than half myometrial invasion</td>
</tr>
<tr>
<td>IB</td>
<td>Invasion equal to or more than half of the myometrium</td>
</tr>
<tr>
<td>II</td>
<td>Tumor invades the cervical stroma but does not extend beyond the uterus</td>
</tr>
<tr>
<td>III</td>
<td>Local and/or regional spread of tumor</td>
</tr>
<tr>
<td>IIIA</td>
<td>Tumor invades the serosa of the corpus uteri and/or adnexas</td>
</tr>
<tr>
<td>IIIB</td>
<td>Vaginal and/or parametrical involvement</td>
</tr>
<tr>
<td>IIIC</td>
<td>Metastases to pelvis and/or para-aortic lymph nodes</td>
</tr>
<tr>
<td>IIIC1</td>
<td>Positive pelvic nodes</td>
</tr>
<tr>
<td>IIIC2</td>
<td>Positive para-aortic lymph nodes with or without positive pelvic lymph nodes</td>
</tr>
<tr>
<td>IV</td>
<td>Tumor invades bladder and/or bowel mucosa and/or distant metastases</td>
</tr>
<tr>
<td>IVA</td>
<td>Tumor invasion of bladder and/or bowel mucosa</td>
</tr>
<tr>
<td>IVB</td>
<td>Disant metastases, including intra-abdominal metastases and or inguinal lymph nodes</td>
</tr>
</tbody>
</table>

FIGO = International Federation of Gynecology and Obstetrics

- Includes grades 1, 2, or 3
- Endocervical glandular involvement only should be considered as stage I and no longer as stage II.
- Positive cytology has to be reported separately without changing the stage.
ENDOMETRIAL CARCINOMA: CLINICALLY

- Irregular or postmenopausal bleeding
- Endometrioid carcinoma is slow growing, late progression with no treatment
- Early stage, 5-year survival is >90%
- Untreated: metastasis to lymph nodes and surrounding structures
- Serous carcinoma is more aggressive, present with advanced stage and have bad prognosis
FALLOPIAN TUBE PATHOLOGY:

• Salpingitis is the commonest significant pathology; almost part of PID
• Gonorrhea, Chlamydia, Mycoplasma, coliforms, Strept and staph
• TB salpingitis is less common but occurs with TB endometritis
• Fever, abd. Pain and sometimes masses (abscess formation = tubo-ovarian abscesses)
• May lead to adhesions, infertility and ectopic pregnancy
PID
FALLOPIAN TUBE CARCINOMA:

- Rare but can occur
- Usually high grade serous type carcinoma
- Can be preceded by serous tubal intraepithelial carcinoma (STIC)
- Seen in patients with BRCA1 and BRCA2 mutations
- Many have TP53 mutations
- They usually present late (mets to ovaries and peritoneal cavity)
OVARIAN PATHOLOGY
FOLLICULAR AND LUTEAL CYSTS:

• Very common and benign
• Unruptured graafian follicle
• Single or multiple; variable in size
• May rupture causing acute abdomen and intraperitoneal bleeding
• May twist and cause acute abdomen “torsion”
TORSION OVARIAN CYST:
POLYCYSTIC OVARIAN SYNDROME:

• Old name: *Stein-leventhal syndrome*

• Hyperandrogenism+menstrual abnormalities+PCO+chronic anovulation & decreased fertility

• Unknown cause (? Imbalance of LH/FSH ratio)

• Young females after menarche; oligomenorrhea, hirsutism, infertility and obesity
PATHOLOGIC FEATURES:
OVARIAN TUMORS: GENERAL FACTS

• Relatively common tumors; many are lethal
• Mortality ranks fifth in women
• Can arise from 3 cell lines: 1. multipotent coelomic epithelium (70-80%) 2. totipotent germ cells 3. sex cord-stromal cells
• 90% of malignant ovarian cancer are epithelial
• They tend to present late (stage IV) with peritoneal involvement
SURFACE EPITHELIAL TUMORS:

• Thought to arise from fallopian tube epithelium and cysts
• Benign ones are usually cystic (cystadenoma or cystadenofibroma)
• Malignant ones maybe cystic (cystadenocarcinoma) or solid (carcinoma)
• Some are borderline malignancy (borderline tumors)
RISK FACTORS FOR OVARIAN CANCER:

- Nulliparity
- Family history
- Germline mutations in TS genes
- Unmarried women and women with low parity
- Prolonged use of OCP reduces the risk
- 5-10% are familial and most have mutations in BRCA1 & BRCA2
- Life risk in BRCA1 30%; but BRCA2 is lower
- Sporadic ovarian cancer only 10% have mutations in BRCA1 & BRCA2
<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage of Malignant Ovarian Tumors</th>
<th>Percentage That Are Bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous</td>
<td>47</td>
<td>25</td>
</tr>
<tr>
<td>Benign (60%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline (15%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant (25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucinous</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Benign (80%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline (10%)</td>
<td>10</td>
<td><5</td>
</tr>
<tr>
<td>Malignant (10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrioid carcinoma</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Undifferentiated carcinoma</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Clear cell carcinoma</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>Granulosa cell tumor</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Teratoma</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Benign (96%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malignant (4%)</td>
<td></td>
<td>Rare</td>
</tr>
<tr>
<td>Metastatic</td>
<td>5</td>
<td>>50</td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
SEROUS CYSTADENOMA FEATURES:
BORDERLINE SEROUS TUMORS:
FIG. 19.15 Derivation of various ovarian neoplasms. Type I tumors progress from benign cystadenoma/endometriosis to include cysts and then to borderline tumors. Type II tumors progress from inclusion cysts to high-grade serous tumors.
TYPE I & II OVARIAN TUMORS

Type I Tumors
- Low-grade
- Slow growing
- Encompass all histologies, including:
 - low-grade serous carcinoma
 - low-grade endometrioid carcinoma
 - mucinous carcinoma
 - and some clear cell carcinomas
- They likely evolve through a step-wise progress from borderline tumors
- Usually chromosomally stable

Type II Tumors
- High-grade
- Evolve rapidly
- Include:
 - high-grade serous carcinoma
 - high-grade endometrioid carcinoma
 - carcinosarcoma
 - undifferentiated carcinoma
 - and some clear cell carcinomas
- No recognizable precursors in the ovary
- Widespread DNA copy number changes
MUCINOUS TUMORS:

- Cells contain mucin
- Less likely to be malignant than serous (10% malignant, 10% Borderline & 80% B9)
- More likely larger and multicystic than serous but less likely bilateral
- Bilateral mucinous ovarian tumors are more likely metastatic from GI tract “Krukenberg tumor”
- Peritoneal mucinous carcinoma “pseudomyxoma peritonei”...more GI primary
- KRAS mutations are common like GIT (50%)
- Stage for stage, better prognosis than serous
MCA: PATHOLOGIC FEATURES
MUCINOUS CARCINOMA FEATURES:
PSEUDOMYXOMA PERITONEIT FEATURES:
ENDOMETIOID CARCINOMA:

- Solid or cystic
- Arise from endometriosis
- Similar histology to endometrial carcinoma
- Bilateral in 30%
- 15-30% have concomitant endometrial Ca
- *PTEN* TS gene mutations and those with upregulation of P13-AKT signaling pathway
BRENNER TUMOR:

• Uncommon; solid, unilateral tumor
• Nests of bland transitional-type epithelium
• Most are benign; few can be malignant
<table>
<thead>
<tr>
<th>Neoplasm</th>
<th>Peak Incidence</th>
<th>Usual Location</th>
<th>Morphologic Features</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germ Cell Origin</td>
<td>Second to third decade of life</td>
<td></td>
<td>Counterpart of testicular seminoma</td>
<td>All malignant but only one-third metastasize; all radiosensitive; 80% cure rate</td>
</tr>
<tr>
<td>Dysgerminoma</td>
<td>Occur with gonadal dysgenesis</td>
<td></td>
<td>Sheets or cords of large clear cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unilateral in 80%–90%</td>
<td></td>
<td>Stroma may contain lymphocytes and occasional granulomas</td>
<td></td>
</tr>
<tr>
<td>Choriocarcinoma</td>
<td>First 3 decades of life</td>
<td>Unilateral</td>
<td>Identical to placental tumor</td>
<td>Metastasizes early and widely</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two types of epithelial cells:</td>
<td>Primary focus may degenerate, leaving only metastases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cytotrophoblast</td>
<td>Resistant to chemotherapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Syncytiotrophoblast</td>
<td></td>
</tr>
<tr>
<td>Sex Cord Tumors</td>
<td>Most postmenopausal, but may occur at</td>
<td></td>
<td>Composed of mixture of cuboidal granulosa cells and spindled or plump lipid-laden</td>
<td>May elaborate large amounts of estrogen Granulosa element may be malignant (5%–25%)</td>
</tr>
<tr>
<td>Granulosa-theca cell</td>
<td>any age</td>
<td></td>
<td>Call-Exner bodies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Granulosa elements may recapitulate ovarian follicle</td>
<td></td>
</tr>
<tr>
<td>Thecoma-fibroma</td>
<td>Any age</td>
<td>Unilateral</td>
<td>Yellow (lipid-laden) plump thecal cells</td>
<td>Most hormonally inactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>About 40% produce ascites and hydrothorax (Meigs syndrome)</td>
<td>Rarely malignant</td>
</tr>
<tr>
<td>Sertoli-Leydig cell</td>
<td>All ages</td>
<td>Unilateral</td>
<td>Recapitulates development of testis with tubules or cords and plump pink Sertoli cells</td>
<td>Many masculinizing or feminizing. Rarely malignant</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>

Metastases to Ovary

| | Older ages | Mostly bilateral | Anaplastic tumor cells, cords, glands, dispersed through fibrous background Cells may be “signet ring” mucin-secreting | Primaries are gastrointestinal tract (Krukenberg tumors), breast, and lung |
TERATOMAS:

• Germ cell tumors, arise from totipotent germ cells
• Forming mature cell lines Ectoderm, endoderm and mesoderm
• Usually midline or para-axial location
• 90% are benign
• First 2 decades of life
MATURE CYSTIC TERATOMA (DERMOID CYST)

• Mature tissue from different all germ cells (skin, hair, teeth, bone, glands...etc.)
• Young women (10-30); unilateral, incidental
• Less than 10 cm
• Can undergo torsion and cause infertility
• Rare malignant transformation
• Surgical removal is the treatment
FEATURES OF MATURE TERATOMA:
IMMATURE (MALIGNANT) TERATOMA:

• Early presentation (< 20 years)
• Bulky and more solid
• Necrosis on cut section + basic mature elements
• The diagnostic feature is finding immature elements (neural, mesenchymal..etc..), has to be sampled very well
• Prognosis depends on grade and stage
IMMATURE TERATOMA FEATURES:
STRUMA OVARII:

• Very specialized benign teratoma
• Contains mature thyroid tissue (maybe functional)
CLINICAL FEATURES OF OVARIAN TUMORS:

• Late presentation (stage IV; malignant ascites, serous carcinoma)
• Pose diagnostic challenges
• Still carry high mortality and bad prognosis
• Survival improvement is modest
• 30% discovered incidentally
• No “good” screening test (CA125 ?)
DISEASES OF PLACENTA AND PREGNANCY
PLACENTAL INFLAMMATION AND INFECTIONS:

<table>
<thead>
<tr>
<th>ASCENDING INFECTIONS:</th>
<th>HEMATOGENOUS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• More common</td>
<td>• Less common</td>
</tr>
<tr>
<td>• Mostly bacterial and cause premature membrane rupture</td>
<td>• Bacteria via blood stream</td>
</tr>
<tr>
<td>(histology show acute chorioamnionitis, neutrophils), may</td>
<td>• Histology: villitis</td>
</tr>
<tr>
<td>extend to umbilicus (acute funisitis)</td>
<td>• TB, Listeria, Syphilis, Toxoplasma, viruses</td>
</tr>
<tr>
<td>• Mycoplasma, candida and vaginal flora bacteria</td>
<td>(Rubella, CMV, HSV)</td>
</tr>
<tr>
<td></td>
<td>• May affect fetus causing “TORCH” complex</td>
</tr>
</tbody>
</table>
ECTOPIC PREGNANCY:

• Fertilization of ova outside uterus, 1%, mostly fallopian tube (90%)
• Causes (slow ova move): salpingitis, uterine tumors and endometriosis
• 50% no anatomic cause found
• Tubal ectopic: hemosalpinx, enlargement, may rupture (acute abdomen and sometimes fatal bleeding)
TUBAL ECTOPIC PREGNANCY FEATURES:
GESTATIONAL TROPHOBLASTIC DISEASES:

• Abnormal proliferation of fetal trophoblasts
• Molar and nonmolar diseases
• Molar: Partial, complete or invasive hydatidiform mole
• Nonmolar: choriocarcinoma
• All have high levels of hCG in serum and urine
• Level is important for dx and monitoring of therapy
HYDATIDIFORM MOLE:

COMPLETE MOLE:
- Large mass of swollen cystically dilated villi
- Normal or atypical chorionic epithelium
- No fetal tissue
- Diploid (46XX or 46XY) two spermatozoa/2000 pregnancies (> in Asia)
- “Large for date”
- Antepartum care increased early detection (U/S exam)
- Before 20 and after 40 yr of age
- 10% invasive after curetting, 2-3% develop into choriocarcinoma

PARTIAL MOLE:
- Less swollen and less proliferation or incomplete proliferation
- Can have fetal tissue
- Triploid (i.e. 69XXY); one egg fertilized by 2 spermatozoa
PATHOGENESIS OF MOLE:

A. Maternal DNA lost from ovum
 - Duplication of haploid sperm
 - Proliferation of monospermic androgenetic complete HM

B. Maternal DNA lost from ovum
 - Two paternal genetic contributions
 - Proliferation of dispermic androgenetic complete HM

C. Maternal and two paternal genetic contributions
 - Proliferation of triploid partial HM

- Normal conception
 - 2 sets of genes
 - 1 paternal
 - 1 maternal
 - Normal fetus

- Complete mole
 - 2 sets of paternal genes
 - No maternal genes
 - No fetus

- Partial mole
 - 3 sets of genes
 - 1 maternal
 - 2 paternal
 - Non-viable fetus
COMPLETE MOLE FEATURES:

NORMAL VILLI
<table>
<thead>
<tr>
<th>Feature</th>
<th>Complete Mole</th>
<th>Partial Mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karyotype</td>
<td>46,XX (46,XY)</td>
<td>Triploid (69,XXY)</td>
</tr>
<tr>
<td>Villous edema</td>
<td>All villi</td>
<td>Some villi</td>
</tr>
<tr>
<td>Trophoblast proliferation</td>
<td>Diffuse; circumferential</td>
<td>Focal; slight</td>
</tr>
<tr>
<td>Serum hCG</td>
<td>Elevated</td>
<td>Less elevated</td>
</tr>
<tr>
<td>Tissue hCG</td>
<td>++++</td>
<td>+</td>
</tr>
<tr>
<td>Risk of subsequent choriocarcinoma</td>
<td>2%</td>
<td>Rare</td>
</tr>
</tbody>
</table>

hCG, Human chorionic gonadotropin.
INVASIVE MOLE:

• Complete mole invading uterine myometrium and sometimes causing rupture (life-threatening hemorrhage)
• No metastasis
• Atypia on histology with invasion to myometrium; may cause distant emboli
• Treatment: surgery and CT
CHORIOCARCINOMA:

• Aggressive malignant neoplasms
• Arise from gestational chorionic epithelium or less commonly totipotent germ cells
• 1/30,000 in USA; but more common in Asia & Africa
• 50% arise from complete mole; 25% after abortions; 25% after normal pregnancies
• Bloody vaginal discharge with rising serum β-HCG
• No chorionic villi; anaplastic tumor cells
CHORIOCARCINOMA FEATURES:
CLINICAL FEATURES OF CHORIOCARCINOMA (Ch Ca):

• Gestational Ch Ca 100% sensitive to CT (cure rate is very high) even after metastasis
• However; non gestational Ch Ca (testicular and ovarian) DON’T respond well to CT (maybe paternal antigens make these sensitive to CT) & maternal immunity against foreign paternal antigens
PLACENTAL SITE TROPHOBLASTIC TUMOR:

• Arise from intermediate trophoblastic cells
• Diploid XX karyotype
• Arise few months after pregnancy
• Serum β-HCG normal or slightly elevated
• Human placental lactogen
• Favorable prognosis if confined to uterus
• Not sensitive to CT like Ch Ca
PREECLAMPSIA/ECLAMPSIA (TOXEMIA OF PREGNANCY/TOP):

- HT + PU + edema in 3rd trimester = PreECL
- 5-10% of pregnancies; primi, >35 yrs
- Severe = seizures (eclampsia)
- No blood toxin identified (misnomer)
- Early detection now; eclampsia is rare
- Etiology is unknown (abnormal uteroplacental vascular bed causing insufficient blood flow)
PATHOGENESIS OF PREECLAMPSIA:

Predisposition
- Diabetes
- Parity
- Hypertension

- Failure of conversion of Spiral arteries to vascular sinuses

- Placenta produces thromboplastins causing DIC, renin causing vasoconstriction

Placental ischemia
- Fetal growth retardation
- Preeclampsia

If untreated
- Poor renal perfusion
- Hypertension
- Proteinuria
- Edema

Eclampsia
CONSEQUENCES OF TOP:

• Placental infarction
• HT: \downarrow Vasodilators (PCY & PGE2); \uparrow Vasoconstrictors (TBX A2)
• Hypercoagulability: endothelial injury
• End-organ failure: kidney & liver
• 10% of severe eclampsia develop “HELLP” syndrome [microangiopathic HA, increased liver enzymes, thrombocytopenia, DIC]
PLACENTAL CHANGES:

• Variable and depends on severity
• Infarcts: increase in number & volume
• Retroplacental hemorrhage
• Villi premature maturation: knots, hypovascularity & edema
• Fibrinoid necrosis of villi and acute atherosis (lipid filled macrophages) of decidual vessels
• Trx: early trx is best. Changes gone after delivery
MORPHOLOGICAL PLACENTAL CHANGES:
Nonneoplastic Epithelial Disorders

- Lichen sclerosus is characterized by atrophic epithelium, subepithelial dermal fibrosis, and bandlike chronic inflammation.
- Lichen sclerosus carries a slightly increased risk for development of squamous cell carcinoma.
- Lichen simplex chronicus is characterized by thickened epithelium (hyperplasia), usually with a dermal inflammatory infiltrate.
- The lesions of lichen sclerosus and lichen simplex chronicus must be biopsied to distinguish them definitively from other causes of leukoplakia, such as squamous cell carcinoma of the vulva.
Tumors of the Vulva

- HPV-related vulvar squamous cell carcinomas usually are poorly differentiated lesions and sometimes are multifocal. They often evolve from vulvar intraepithelial neoplasia.
- Non-HPV-related vulvar squamous cell carcinomas occur in older women and usually are well differentiated and unifocal. They are often preceded by “differentiated” vulvar intraepithelial neoplasia associated with lichen sclerosus.
- Vulvar Paget disease is characterized by a red, scaly plaque caused by proliferation of epithelial cells within the epidermis; usually, there is no underlying carcinoma, unlike Paget disease of the nipple.
Cervical Neoplasia

- Risk factors for cervical carcinoma are related to HPV exposure, such as early age at first intercourse, multiple sexual partners, and other factors including cigarette smoking and immunodeficiency.
- Nearly all cervical carcinomas are caused by HPV infections, particularly high-risk HPV types 16, 18, 31, and 33; the HPV vaccine is effective in preventing infection resulting from the HPV types most commonly associated with carcinoma.
- HPV expresses E6 and E7 proteins that inactivate the p53 and RB tumor suppressors, respectively, resulting in increased cell proliferation and suppression of DNA damage–induced apoptosis.
- In cervical cancer, high-risk HPV is integrated in the host genome, an event that increases the expression of E6 and E7 and contributes to progression to cancer.
- The Pap smear is a highly effective screening tool for the detection of SIL and carcinoma and has significantly reduced the incidence of cervical carcinoma. HPV testing is currently being used in conjunction with the Pap smear.
Nonneoplastic Disorders of Endometrium

- Adenomyosis refers to growth of endometrium into the myometrium often with uterine enlargement.
- Endometriosis refers to endometrial glands and stroma located outside the uterus and most often involves the pelvic or abdominal peritoneum. Rarely, distant sites such as the lymph nodes and the lungs also are involved.
- The ectopic endometrium in endometriosis undergoes cyclic bleeding, and the condition is a common cause of dysmenorrhea and pelvic pain.
Endometrial Hyperplasia and Endometrial Carcinoma

- Endometrial hyperplasia results from unopposed endogenous or exogenous estrogen.
- Risk factors for developing endometrial hyperplasia include anovulatory cycles, polycystic ovary syndrome, estrogen-producing ovarian tumor, obesity, and estrogen therapy without counterbalancing progestin.
- Hyperplasia is classified based on cytologic atypia, which determines the risk of developing endometrioid carcinoma.
- On the basis of clinical and molecular data, two major types of endometrial carcinoma are recognized:
 - **Endometrioid carcinoma** is associated with estrogen excess and endometrial hyperplasia. Early molecular changes include inactivation of DNA mismatch repair genes and the *PTEN* gene.
 - **Serous carcinoma** of the endometrium arises in older women and usually is associated with endometrial atrophy and a distinct precursor lesion, serous intraepithelial carcinoma. Mutations in the *TP53* gene are an early event, usually being present in serous endometrial intraepithelial carcinoma as well as invasive serous carcinoma.
- Stage is the major determinant of survival in both types. Serous tumors tend to manifest more frequently with extrauterine extension and therefore have a worse prognosis than endometrioid carcinomas.
Ovarian Tumors

- Tumors may arise from epithelium, sex cord–stromal cells, or germ cells.
- Epithelial tumors are the most common malignant ovarian tumor and are more common in women older than 40 years of age.
- The major types of epithelial tumors are serous, mucinous, and endometrioid. Each has a benign, malignant, and borderline counterpart.
- Serous carcinoma is the most common and many arise in the distal fallopian tube.
- Sex cord–stromal tumors may display differentiation toward granulosa, Sertoli, Leydig, or ovarian stromal cell type. Depending on differentiation, they may produce estrogens or androgens.
- Germ cell tumors (mostly cystic teratomas) are the most common ovarian tumor in young women; the vast majority are benign.
- Germ cell tumors may differentiate toward oogonia (dysgerminoma), primitive embryonal tissue (embryonal), yolk sac (endodermal sinus tumor), placental tissue (choriocarcinoma), or multiple tissue types (teratoma).
Ectopic Pregnancy

- Ectopic pregnancy is defined as implantation of the fertilized ovum outside of the uterine corpus. Approximately 1% of pregnancies implant ectopically; the most common site is the fallopian tube.
- Chronic salpingitis with scarring is a major risk factor for tubal ectopic pregnancy.
- Rupture of an ectopic pregnancy is a medical emergency that, if left untreated, may result in exsanguination and death.
Gestational Trophoblastic Disease

- Molar disease is a result of an abnormal contribution of paternal chromosomes to the conceptus.
- Partial moles are triploid and have two sets of paternal chromosomes. They typically are accompanied by fetal tissue. There is a low rate of persistent disease.
- Complete moles are diploid, and all chromosomes are paternal. Rarely are embryonic or fetal tissues associated with a complete mole.
- Among complete moles, 10% to 15% are associated with persistent disease that usually takes the form of an invasive mole. Only 2% of complete moles progress to choriocarcinoma.
- Gestational choriocarcinoma is a highly invasive and frequently metastatic tumor that, in contrast with ovarian choriocarcinoma, is responsive to chemotherapy and curable in most cases.
- Placental site trophoblastic tumor is an indolent tumor of intermediate trophoblast that produces human placental lactogen. It can be cured surgically but once it spreads it does not respond well to chemotherapy.
Summary

Clinical Presentations of Breast Disease

- Symptoms affecting the breasts are evaluated primarily to determine if malignancy is present.
- Regardless of the symptom, the underlying cause is benign in the majority of cases.
- Breast cancer is most commonly detected by palpation of a mass in younger women and in unscreened populations and by mammographic screening in older women.
Summary

Breast Carcinoma

- The lifetime risk of developing breast cancer for an American woman is 1 in 8.
- A majority (75%) of breast cancers are diagnosed after the age of 50.
- The major risk factors for developing breast cancer are related to hormonal factors and inherited susceptibility.
- About 12% of all breast cancers are caused by identified germline mutations; $BRCA1$ and $BRCA2$ genes account for one-half of the cases associated with single-gene mutations.
- DCIS is a precursor to invasive ductal carcinoma and is most often found on mammographic screening as calcifications. When carcinoma develops in a woman with a previous diagnosis of untreated DCIS, it is usually an invasive ductal carcinoma in the same breast.
- LCIS is both a marker of increased risk and a precursor lesion. When carcinoma develops in a woman with a previous diagnosis of LCIS, two-thirds are in the same breast and one-third is in the contralateral breast.
- Invasive carcinomas are classified according to histologic type and biologic type: ER-positive/HER2-negative, HER2-positive, and ER/PR/HER2-negative (triple-negative). The biologic types of cancer have important differences in patient characteristics, grade, mutation profile, metastatic pattern, response to therapy, time to recurrence, and prognosis.
- Prognosis is dependent on the biologic type of tumor, stage, and the availability of treatment modalities.
KEEP CALM AND GOOD LUCK!

AL-ABBADI