Heme 9 Myeloid neoplasms

- The minimum number of blasts to diagnose acute myeloid leukemia is
 - 5%
 - 10%
 - 20%
 - 50%
 - 80%

- AML with the best prognosis is
 - AML with recurrent cytogenetic abnormality
 - AML with myelodysplasia
 - Therapy related AML
 - AML, NOS

- Myelodysplasia is associated with all the following, except:
 - Anemia
 - Thrombocytopenia
 - Leukopenia
 - Thrombocytosis
 - Risk of AML transformation

- Which MPN is associated with BCR/ABL fusion
 - CML
 - ET
 - PV
 - PMF

- Leukoerythroblastosis is associated with
 - CML
 - ET
 - PV
 - PMF

3 major categories

- Acute myeloid leukemia
- Myeloproliferative neoplasms
- Myelodysplastic syndromes

AML

- Age of presentation is around 50
 - Again can happen at any age
- Stigmata of pancytopenia
- Splenomegaly can occur
- Rarely as discrete mases
 - Called myeloid sarcoma

- Diagnosis depends on
 - Morphology
 - Immuneophenotype
 - Karyotype
 - Predictive of prognosis

Pathogenesis

- Mutations that result in arresting myeloid cells at an early stage of differentiation
- One example is acute promyelocytic leukemia
 - t(15;17) resulting in fusion of RARA with PML
 - The resulting fusion gene arrests myeloid cells at the promyelocyte stage
 - Treatment with all-trans retinoic acid overcomes this protein and forces the cells to differentiate into neutrophils
 - Cure rate of ~80%

Morphology

- At least 20% blasts by definition
- Auer rods

Class	Prognosis
I. AML With Recurrent Chromosomal Translocations	
AML with t(8;21)(q22;q22); <i>RUNXT1/RUNX1</i> fusion gene	Favorable
AML with inv(16)(p13;q22); <i>CBFB/MYH11</i> fusion gene	Favorable
AML with t(15;17)(q22;q21.1); <i>PML/RARA</i> fusion gene	Favorable
AML with t(11q23;variant); <i>MLL</i> fusion genes	Poor
AML with mutated <i>NPM1</i>	Variable
II. AML With Multilineage Dysplasia	
With previous MDS	Very poor
Without previous MDS	Poor
III. AML, Therapy-Related	
Alkylating agent–related	Very poor
Epipodophyllotoxin-related	Very poor
IV. AML, Not Otherwise Classified	
Subclasses defined by extent and type of differentiation (e.g., myelocytic, monocytic)	Intermediate

Immunophenotype

- CD34
- Myeloid markers
 - MPO, CD33, CD13, CD117, CD15
 - MPO is the most specific

Clinical manifestations

- Very similar to ALL
 - Stigmata of pancytopenia
- CNS manifestations are less frequent than ALL
- Treatment with chemotherapy and possibly SCT
- Prognosis is variable but oveall 5-year survival is~15-30%.

Myelodysplastic syndrome

- The term *myelodysplastic syndrome* (MDS) refers to a group of clonal stem cell disorders characterized by maturation defects that are associated with ineffective hematopoiesis with cytopenias and a high risk of transformation to AML
- Cytosis rules out MDS!!!

- Most cases are idiopathic
 - Some cases are induced by exposure to alkylating agents or ionizing radiation
- Pathogenesis involves genetic and epigenetic mutations that result in inability of the stem cells to have effective poeisis
 - Still able to proliferate and differentiate but in a disorderly manner!

Morphology

- Hypercellular bone marrow
- Dysplastic changes
 - Erythroid: Abnormal nuclear contour and iron deposits (ring sideroblasts)
 - Myeloid: abnormal segmentation and grnaulation
 - Megakaryocyte: small and monolobed

Clinical manifestations

- Age 50-70
- Cytopenia and its effects
 - Does not have to be PANcytopenia
 - Patients may present with only anemia or only thrombocytopenia
- transforms to AML in 10-40% of the cases
- Survival between 9-29 months

Myeloproliferative Neoplasms

- Four major neoplasms
 - Chronic myelogenous leukemia
 - Polycythemia vera
 - Essential thrombocythemia
 - Primary myelofibrosis

 The common pathogenic feature of myeloproliferative neoplasms is the presence of <u>mutated</u>, <u>constitutively</u> <u>activated tyrosine kinases</u> or other acquired aberrations in signaling pathways that lead to growth factor independence (uncontrolled growth).

- They can transform into
 - Spent phase: fibrosis
 - Blast phase: acute leukemia

CML

- Pathogenesis
- BCR-ABL translocation t(9;22)
 - The same as in B-ALL
 - Present in all cells (B, T, myeloid)
 - It is a tyrosine kinase that results in uncontrolled proliferation
 - Does NOT inhibit differentiation

• Disease course is marked by excessive production of relatively normal blood cells, particularly granulocytes and platelets.

morphology

- Hypercellular bone marrow
- Splenomegaly with extensive extramedullary hematopoiesis
- High WBC count, often exceeding 100000

Clinical manifestations

- Age 50-70
- Nonspecific symptoms of fatigue, weakness
- Dragging sensation in the abdomen due to splenomegaly
- Must be distinguished from "leukemoid reaction"
 - High WBC count secondary to infection or infarction
 - Best done by molecular testing for BCR-ABL

- Slowly progressive disease
 - Median survival is 3 years without treatment
- Can progress to accelerated phase
 - Anemia, thombocytopenia and additional genetic mutations
- Progress to blast phase
 - 70% AML
 - 30% ALL
- Rarely progresses to spent phase with fibrosis

PV

• Discussed previously

Primary myelofibrosis

 The hallmark of primary myelofibrosis is the development of obliterative marrow fibrosis, which reduces bone marrow hematopoiesis and leads to cytopenias and extensive extramedullary hematopoiesis

- JAK2 mutation in ~50-60% of the cases
- Neoplastic cells involve the megakaryocytes
 - Secrete fibrogenic factors resulting in extensive fibrosis
 - PDGF and TGF-B
- Extramedullary hematopoiesis with marked splenomegaly

Morphology

- Peripheral blood:
 - leukoerythroblastosis
 - Tear drop RBCs
 - Erythroid precursor cells
 - Immature myeloid cells
 - As you recall this is also found in myelophthisic anemia
 - Abnormally large platelets
- Bone marrow:
 - severe fibrosis
 - Abnormally large and clustered megakaryocytes

ATManSourMD

ATManSourMD

Clinical manifestations

- Age more than 60
- Anemia and splenomegaly
- Fatigue, weakness and night sweats
- Lab results
 - Anemia: normochromic and normocytic
 - Leukoerythroblatosis
- Bone marrow is a must for diagnosis

- Median survival is 4-5 years
- 5-20% transform to AML
- Treat with JAK2 inhibitors and possibly SCT

- The minimum number of blasts to diagnose acute myeloid leukemia is
 - 5%
 - 10%
 - 20%
 - 50%
 - 80%

- AML with the best prognosis is
 - AML with recurrent cytogenetic abnormality
 - AML with myelodysplasia
 - Therapy related AML
 - AML, NOS

- Myelodysplasia is associated with all the following, except:
 - Anemia
 - Thrombocytopenia
 - Leukopenia
 - Thrombocytosis
 - Risk of AML transformation

- Which MPN is associated with BCR/ABL fusion
 - CML
 - ET
 - PV
 - PMF

- Leukoerythroblastosis is associated with
 - CML
 - ET
 - PV
 - PMF