

<u>Flashback</u>

Blood groups:

 <u>Classical</u> blood groups: A,B,AB,O which are **genetically inherited antigens** and don't change until death.

Antibodies are produced two months after birth

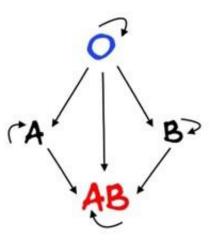
(so in new borns there are no antibodies)

2) <u>Minor</u> blood groups are : MM,MN,NN,PP,NP

*They are under the control of an autosomal locus and inherited like the AB group (no dominance or recessiveness) but independent of the ABO system

3)Rh blood groups are: Rh+, rh- (pay attention if it is capital or small litter)

*People who are Rh+ have D antigens on their RBC in addition to classic blood group


*50% of Europeans are Rh+

*In both of Rh+,rh-,there are no antibodies but if blood is donated from Rh+ to rh- the person who is rh- will produce antibodies toward the D antigen of Rh+ blood which will cause agglutination

Agglutination: the rxn between the antibodies and the antigens on RBCs

Aggregation: clumping of platelets that leads to clot formation

Blood Group	Percentage Worldwide
A	41%
В	10%
AB	4%
0	45%
Rh	85%

** **O** is universal **donor** while **AB** is universal **recipient**<u>but</u> they are not always universal donor or recipient as more than 3 bags will cause death due to agglutination

Indications for blood transfusion:

1-To restore blood volume(ex: in accidents)

2-Provide RBCs (in the case of anemia)

3-Increase blood coagulability

4-Replace blood in infants with rh- 5-Supply

antibodies , proteins & WBCs

*Nowadays we have machines to separate RBCs ,WBCs, platelets ,plasma each alone

*We use **ACD** (Acid Citrate Dextrose) aka **CPD** (Citrate Phosphate Dextrose) as **anticoagulants** for stored blood but not heparin or others

Complications of blood transfusion:

Early:

1-Hemolytic reaction (immediate or delayed)

- 2-Reaction due to infected blood or allergic reaction to WBCs or platelets
- 3-Circulatory overload(if transfused blood was more than 5L)
- 4-Citrate toxicity and hyperkalemia
- 5-clotting abnormalities after massive transfusion

Late:

- 1-Transmission of serious diseases (hepatitis, malaria, AIDS, syphilis)
- 2-Transfusional iron overload
- 3- Immune sensitization Cross

<u>matching</u>:

If we have a donor blood and recipient blood , we should:

1)Mix plasma from donor with RBCs and plasma from recipient

2)Mix RBC from donor with RBCs and plasma from recipient so we can exclude any incompatibility *especially in minor blood groups* as minor and classical groups may cause clumping

Do	nor	Reci	pient
RBCs	Plasma	RBCs	Plasma

*Blood is stored at 4 °C, above it ,blood will be rotten while below it ,the membranes of RBCs will be ruptured

*iln emergency case (no time to cross matching)we will give Orh- to patients but if it is not available ,we give ORh+

*In blood bank , the Na+/K+ pump is weakened so Na+ will enter and K+ will leave so the cell will swell and become fragile , also the heart will be in danger due to high K+ concentration in plasma(hyperkalamia) which affects ventricles *If we transfuse blood that has been stored for 2 weeks at 4 Celsius , we will have 80%surviving cells and every day after that 1%of them undergo hemolysis

*Fresh blood (not from blood bank) is used to donate WBCs or platelets *plasma

can be stored for many months

TRUE OR FAULSE Questions:

1) Donor blood is collected to heparin which act as anticoagulant (F)

2)Most ABO incompatible blood transfusions are due to failure of check identity. (T)

- 3) Anti-A and Anti- B are often absent in serum of group O babies (T)
- 4) After blood has been stored for 3 weeks, at least , 70% of the transfused RBC will be retained in circulation 24hr after transfusion (T)

5)From the following blood groups

AMNRh+ from mother and ANNRh+ from father , child is OMNrh Is

the father real or not?

*it is real and here is the explanation:

Phenotype	ANNRh+ (father)	AMNRh+ (mother)	
Possible	AANNRhRh	AAMNRhRh	
Genotype	AANNRhrh	AAMNRhrh	
	AONNRhRh	AOMNRhRh	
	AONNRhrh	AOMNRhrh	
So the genotype of the child(OMNrh) will be a result if the genotype of father is AONNRhrh and for mother is AOMNRhrh.			