Cardiac output and Venous Return

Faisal I. Mohammed, MD, PhD

Objectives

- Define cardiac output and venous return
- Describe the methods of measurement of CO
- Outline the factors that regulate cardiac output
- Follow up the cardiac output curves at different physiological states
- Define venous return and describe venous return curve
- Outline the factors that regulate venous return curve at different physiological states
- Inter-relate Cardiac output and venous return curves

Important Concepts About Cardiac Output (CO) Control

- Cardiac Output is the sum of all tissue flows and is affected by their regulation (CO = 5L/min, cardiac index = 3L/min/m²).
- CO is proportional to tissue O_{2.} use.
- CO is proportional to 1/TPR when AP is constant.
- *F=∆P/R* (Ohm's law)
- CO = (MAP RAP) / TPR, (RAP=0) then

• CO=MAP/TPR ; MAP=CO*TPR

OXYGEN CONSUMPTION (L/min)

Magnitude & Distribution of CO at Rest & During Moderate Exercise

Variations in Tissue Blood Flow

			ml/min/	
	Per cent	ml/min	100 gm	
Brain	14	700	50	
Heart	4	200	70	
Bronchi	2	100	25	
Kidneys	22	1100	360	
Liver	27	1350	95	
Portal	(21)	(1050)		
Arterial	(6)	(300)		
Muscle (inactive state)	15	750	4	
Bone	5	250	3	
Skin (cool weather)	6	300	3	
Thyroid gland	1	50	160	
Adrenal glands	0.5	25	300	
Other tissues	3.5	175	1.3	
Total	100.0	5000		

Control of Cardiac Output

Factors that affect the Cardiac Output

Ventricular Stroke Work Output

Effect of Sympathetic and Parasympathetic Stimulation on Cardiac Output

Right Atrial Pressure (mmHg)

The Cardiac Output Curve

- Plateau of CO curve determined by heart strength (contractility + ⁺HR)
 - \uparrow Sympathetics \Rightarrow \uparrow plateau
 - ↓ Parasympathetics (HR[↑]) ⇒ (? plateau)
 ↑ Plateau
 - Heart hypertrophy's $\Rightarrow \uparrow$ plateau
 - Myocardial infarction \Rightarrow (? plateau)
 - ↓ Plateau

The Cardiac Output Curve (cont'd)

- Valvular disease $\Rightarrow \downarrow$ plateau (stenosis or regurgitation)
- Myocarditis $\Rightarrow \downarrow$ plateau
- Cardiac tamponade \Rightarrow (? plateau)
- \downarrow Plateau
- Metabolic damage $\Rightarrow \downarrow$ plateau

Factors Affecting Cardiac Output

Factors Affecting Stroke Volume

A Summary of the Factors Affecting Cardiac Output

REGULATION OF STROKE VOLUME: CONTRACTILITY

Cardiac Contractility

- Best is to measure the C.O. curve, but this is nearly impossible in humans.
- dP/dt is not an accurate measure because this increases with increasing preload and afterload.
- (dP/dt)/P _{ventricle} is better. P _{ventricle} is instantaneous ventricular pressure.
- Excess K⁺ decreases contractility.
- Excess Ca⁺⁺ causes spastic contraction, and low Ca⁺⁺ causes cardiac dilation.

REGULATION OF STROKE VOLUME: AFTERLOAD

Measurement of Cardiac Output

- Electromagnetic flowmeter
- Indicator dilution (dye such as cardiogreen)
- Thermal dilution
- Oxygen Fick Method
- $CO = (O_2 consumption / (A-VO_2 difference))$

Electromagnetic flowmeter

 $\begin{array}{l} q_1 = CQ^*C_{VO2} \\ q_2 = amount \ of \ Oxygen \ uptake \ by \ the \ lungs \\ q_3 = CO_-^* \ C_{AO2} \ and \ equals = CQ^*C_{VO2} + O_2 \ uptake \\ Oxygen \ uptake = CQ\{C_{AO2} - C_{VO2}\} \\ CO = Oxygen \ uptake / \{C_{AO2} - C_{VO2}\} \end{array}$

Spirometer

Swan-Ganz catheter

O₂ Fick Problem

- If pulmonary vein O_2 content = 200 ml $O_{2/}L$ blood
- Pulmonary artery O_2 content = 160 ml O_2 /L blood
- Lungs add 400 ml O₂ /min
- What is cardiac output?
- Answer: 400/(200-160) =10 L/min

THE INDICATOR DILUTION PRINCIPLE

Indicator concentration

Thermodilution Method Curve

VENOUS RETURN

- Definition: Volume of blood returns to either the left side or right side of the heart per minute
- VR = CO = Δ P/R
- VR = (Venous pressure –Rt. Atrial pressure)/ resistance to venous return

Effect of Venous Valves

Effect of Venous Valves

Venous Valves

Effect Of Gravity on Venous Pressure

Vessel Structure and Function

Dilated and twisted appearance of varicose veins in the leg

Venous Pressure in the Body

- Compressional factors tend to cause resistance to flow in large peripheral veins.
- Increases in right atrial pressure causes blood to back up into the venous system thereby increasing venous pressures.
- Abdominal pressures tend to increase venous pressures in the legs.

Central Venous Pressure

- Pressure in the right atrium is called *central venous* pressure.
- Right atrial pressure is determined by the balance of the heart pumping blood out of the right atrium and flow of blood from the large veins into the right atrium.
- Central venous pressure is normally 0 mmHg, but can be as high as 20-30 mmHg.

Factors affecting Central Venous Pressure

- Right atrial pressure (RAP) is regulated by a balance between the ability of the heart to pump blood out of the atrium and the rate of blood flowing into the atrium from peripheral veins.
- Factors that increase RAP:
 -increased blood volume
 -increased venous tone
 dilation of arterioles
 -decreased cardiac function

Factors that Facilitate Venous Return

The Venous Return Curve

RIGHT ATRIAL PRESSURE (mmHg)

RIGHT ATRIAL PRESSURE (mmHg)

VENOUS RETURN (L/min/m)

Venous Return (VR)

- Beriberi thiamine deficiency \Rightarrow arteriolar dilatation $\Rightarrow \downarrow RVR$
- (RVR= resistance to venous return) because VR = (MSFP - RAP) /RVR (good for positive RAP's)
- A-V fistula \Rightarrow (? RVR)
- \downarrow RVR
 - C. Hyperthyroidism \Rightarrow (? RVR) \downarrow RVR

Venous Return (VR) (cont'd)

- Anemia $\Rightarrow \downarrow \text{RVR} \text{ (why?)}$
 - \uparrow Sympathetics \Rightarrow \uparrow MSFP
 - ↑ Blood volume \Rightarrow ↑ MSFP + small ↓ in RVR
 - ↓ Venous compliance (muscle contraction or venous constriction) \Rightarrow (? MSFP)
 - ↑ MSFP

Factors Causing Venous Return

- \downarrow Blood volume $\Rightarrow \downarrow$ MSFP
- \downarrow Sympathetics \Rightarrow (? v. comp. and MSFP)
 - \uparrow Venous compliance and \downarrow MSFP
- Obstruction of veins \Rightarrow (? RVR) • \uparrow RVR

RIGHT ATRIAL PRESSURE (mmHg)

CARDIAC OUTPUT AND VENOUS RETURN (L/min/m)

Thank You

