Pseudomonas Aeruginosa

Pseudomonas aeruginosa

- Motile (by single or multiple polar flagella) gram-negative rods
- Obligate (strict) aerobes (most strains)
- Oxidase (usually) and catalase positive
- Nonfermentative chemoheterotrophic respiratory metabolism
- Minimal nutritional reqts.; Many organic compounds used as C and N sources, but only a few carbohydrates by oxidative metabolism
 - Glucose used oxidatively
 - Lactose negative on MacConkey's agar
- Some strains produce diffusible pigments:
 - Pyocyanin (blue); fluorescein (yellow); pyorubin (red)
- P. aeruginosa produces characteristic grape-like odor and blue-green pus & colonies
- Broad antibiotic resistance

Structural Components

- Adherence to host cells mediated by pili and nonpilus adhesins.
- LPS (lipopolysaccharide) inhibiting antibiotic killing and suppress neutrophil and lymphocyte activity
- Alginate mucoid exopolysaccharide that forms a shiny biofilm protecting from antibodies, complement, phagocytosis, and antibiotics
- Pyocyanin impairs ciliary function, mediates tissue damage through production of oxygen radicals

Epidemiology

- Primary habitat is the environment (water and soil)
- Normal flora 2-10% of healthy individuals
- Infections mostly in hospitalized patients with illnesses, such as CF, leukemia and burns.
- Minimal nutritional requirements and can tolerate broad temperature spectrum (20-42C) and thus contaminate respirator humidifiers, medications and contact lens solutions.
- Can transiently colonize the respiratory and GI tract of hospitalized patients
- Respiratory colonization of CF patients become chronic leading to high morbidity and mortality rates.
- No seasonal incidence

Pathogenesis

- Require break of first-line defenses (wound or contaminated solution)
- > Attachment by pili, flagella and extracellular polysaccharide
- Virulence Factors (toxins and enzymes):
 - Exotoxin A
 - Similar in structure to Diptheria toxin
 - Inhibits protein synthesis by ADP-ribosylating EF-2 (G-protein)
 - Causes Dermatonecrosis in burn wounds, corneal damage in ocular infections, and tissue damage in chronic pulmonary infections.
 - Also this toxin is immunosuppressive
 - Its presence is associated with fatal outcome and Ab against it is with survival.

• Exoenzyme S

- ADP-ribosylates G-proteins including p21 RAS interfering with host cell growth
- Cellular destruction and spread from burn wounds

• Elastase

- Destruction of elastin-containing tissues (blood vessels, lung tissue, skin), collagen, immunoglobulins (IgA and IgG), and complement factors
- Can produce hemorrhagic lesions (ecthyma gangrenosum) associated with disseminated infection
- Endotoxins
- Phospholipase C
 - Breaks down lipids and lecithin causing tissue destruction
- Alkaline Protease

Clinical Disease

- Pulmonary Infections
- Burn Wound Infections and other skin and soft tissue infections (life threatening)
- UTI's (especially catheterized)
- External Otitis (malignant OE, swimmer's ear)
- Eye Infections and corneal ulceration via contaminated contact lens cleaning fluids
- Pseudomonal Endocarditis

Pulmonary Infections

- Can range from asymptomatic colonization to severe necrotizing bronchopneumonia
- Colonization is seen in patients with cystic fibrosis, chronic lung disease, and neutropenia
- Mucoid strains are commonly isolated from chronic pulmonary patients and are more difficult to eradicate
- Predisposing conditions include previous therapy with broad spectrum abx (disrupts normal protective bacteria population and use of respiratory therapy equipment (can introduce the organism to lower airways)
- Mortality rate can be as high as 70% for invasive bronchopneumonia

Pseudomonas PNA

Ecthyma Gangrenosum

• Ecthyma gangrenosum is a well recognized cutaneous manifestation of severe, invasive infection by *Pseudomonas aeruginosa* that is usually seen in immunocompromised, burn patients, and other critically ill patients

Black necrotic ulcer

Malignant Otitis Externa

Diabetic pts

Pseudomonas Keratitis and Corneal Ulceration

Endocarditis

Diagnosis and treatment

Dx

- Oxidase positive colonies, pyocyanin production and ability to grow at 42C are diagnostic
- Culture and sensitivity tests

Rx

- Inherently resistant to many antibiotics (penicillin, ampicillin, tetracycline, earlier aminoglycosides and sulfonamides)
- Can mutate to more resistant strains during therapy
- Penetration of antibiotic is highly dependent on outer membrane pores which can be altered (high dose carbenicillin and ticarcillin)
- Production of B-lactamases
- 3rd generation cephalosporins, carbapenems and monobactams drugs of choice
- Combination of active antibiotics generally required for successful therapy (Anti-β-lactam and aminoglycoside)
- No vaccine

Moraxella catarrhalis

GENERAL OVERVIEW

- Formerly classified as Neisseria & more recently Branhamella
- •Gram negative, aerobic coccobacilli, nomotile
- •Grows on blood or chocolate agar

CLINICAL SYNDROMES

- •In Elderly Patients with Chronic Pulmonary Disease
 - Bronchitis
 - Bronchopneumonia
- •In Previously Healthy People (normal flora)
 - Sinusitis
 - Otitis

TREATMENT, PREVENTION, AND CONTROL

- Most strains produce β -lactamase; Penicillin Resistant
- Amoxicillin-clavulanate, second and third generation cephalosporin

Colony morphology

Catalase positive

B. catarrhalis

Oxidase positive

Penicillin resistant

B. catarrhalis: Oxidase-positive

- Classification order Mycoplasmatales; family Mycoplasmataceae; 2 medically important genera
 - Mycoplasma
 - Ureoplasma
 - Three common clinical isolates *M. pneumoniae*, *M. hominis*, *M. genitalium* and *U. urealyticum*
- Morphology and cultural characteristics
 Do not possess the distinctive cell wall of bacteria

- Plasma membrane is the outermost part of the organism and is unique among bacteria in that it has a high content of sterols (acquired from medium or tissue living in) that act to prevent osmotic lysis
- Very small in size (too small to be seen with an ordinary light microscope) and highly pleomorphic
- Don't stain with a Gram stain
- Non-motile
- May possess a capsule
- Although some are free living, most are closely adapted parasites

- Grow on media enriched with serum (need cholesterol)
- Grow best at 35-37⁰ C either aerobically or anaerobically
- *M. pneumoniae* grows in 5-14 days, *M. hominis* in 2-4 days, and *U. urealyticum* in 24-28 hours.
- M. pneumoniae colonies resemble fried eggs and can be stained with Dienes stain (they stain blue)

Mycoplasma colonies with Diene's stain

Figure 21-16 _

Diene's stain of *Mycoplasma* spp. colonies demonstrating typical "fried egg" appearance.

Figure 21-17 _

Typical mixed sizes of *Mycoplasma* organisms on primary isolation media: *Mycoplasma salivarium*. (Courtesy Bionique Testing Laboratories, Saranac Lake, N.Y.)

- Virulence factors
 - Not invasive and simply colonize cell surfaces through specific binding
 - It binds to cilia in the bronchus via surface mycoplasmal cytadhesin (P1 protein) to sialic acid leading to interference with the ciliary action resulting in its desquamation.
 - Damage to host tissues may be due to immune response rather than invasion by the organism.
 - Organism shed in UR secretions for 2-8 days before onset of symptoms and shedding continue up to 14 weeks

- Clinical significance
 - M. pneumonia the major cause of primary, atypical pneumonia (walking pneumonia). 10% of all pneumonia
 - Transmitted by droplet infection
 - Age range: 5-15 yrs old, more severe in older children
 - After a 2-3 week incubation, the disease begins as a mild, upper respiratory tract infection and progresses to fever, headache, malaise, and a dry cough which is usually mild and self-limited.
 - 3-10% develop clinically apparent pneumonia with occasional complications of arthritis, rashes, cardiovascular problems, or neurological problems.
 - Pharyngitis with fever and sore throat
 - Myringitis or otitis media
 - Genital tract infections caused by *M. hominis* and *U. ureolyticum* which may also be found as part of the NF in the genital tract
 - May cause nongonococcal urethritis, PID, post-partum fever, infertility, stillbirth, spontaneous abortion, and acute urethral syndrome

Mycoplasma DX

– M. pneumoniae

- Isolation in culture: incubation for more than a week
- Ability of colonies to hemolyze guinea pig RBCs
- 4 fold rise in specific antibody titer
- Cold agglutinin test a nonspecific test in which the patient produces cold reacting antibodies that agglutinate type O human RBCs at 4^o C, but not at 37^o C
 - A single titer of 1:128 is significant and occurs in 7 days and disappears in 6 weeks.
- M. hominis
 - Isolation in culture
 - No hemolysis of guinea pig RBCs
- U. urealyticum
 - Urease production

- Treatment
 - M. pneumonia Clarythromycin and azithromycin and quinolones
 - Genital infections Tetracycline, azithromycin and quinolones

- Classification family Legionellaceae with more than 21 species. We will only discuss *L. pneumophilia*
- Morphology/cultural characteristics
 - Small, G- pleomorphic rods that stain very poorly alternative Dieterle stain
 - Motile
 - Requires cysteine, ferric ions and PH 6.9 for growth and, therefore, won't grow on ordinary lab media
 - The best media for primary isolation is buffered charcoal yeast extract with alpha keto glutarate (BCYE α).
 - This can be made selective by the addition of cefamandole, anisomycin, and polymyxin B.

Legionella in BCYE α

- Growth in enhanced by incubation in a candle jar or in 2.5% CO_2
- Growth might take 2-10 days
- Colonies are pinpoint with a ground-glass appearance
- Diagnosis
 - Inoculate BCYE α and CBA and look for growth versus no growth
 - Are relatively inert and nonfermenter
 - Catalase +
 - Direct fluorescent antibody testing (positive in 25-50%)
 - PCR

- Virulence factors
 - Inhibit phagosome-lysosome fusion which allows for intracellular growth
 - Endotoxin (LPS) less toxic than other G-ve
 - Inhibit generation of bactericidal substances in phagocytic cells (peroxide)

- Clinical significance
 - Acute pneumonia Legionnaire's disease
 - Airborne transmission with an incubation of 2-10 days
 - Symptoms include fever, chills, malaise, myalgia, headache, dry cough, vomiting, diarrhea, and abdominal and chest pain. Hospitalization is usually required in 3-5 days.
 - Without antibiotics, the fatality rate is as high as 15%
 - The disease occurs more in males over 60 years of age and in the immunocompromised
 - No person to person transmission
 - Disease rate after exposure is low
 - The reservoir of infection is often in the cooling towers of air conditioning systems and in hot water lines as well as in soil and water

- Pontiac fever an acute, self-limited febrile illness with an incubation of 24-36 hours. Symptoms include a high fever, chills, malaise, myalgia, and headache which lasts 2-5 days
- Reaction to endotoxin or hypersensitivity to *Legionella* components
- Treatment/antimicrobic susceptibility
 - Erythromycin, rifampin, clarithromycin or azithromycin
- Prevention
 - Minimize production of aerosols in public places
 - Resistant to chlorine and heat