Respiratory distress syndrome

Eman Farouk Badran MD. MRCPCH Professor of Pediatrics Head division of Neonatology At Jordan University Hospital Third year medical students

December/2017

Outlines

- Definition
- Physiology
 - Respiration
 - Surface tension
 - Lung compliance
 - Lung volume
 - surfactant
- Respiratory distress syndrome
 - Pathophysiology
 - Incidence
 - Presentation
 - management

Respiration = the series of **exchanges** that leads to the uptake of oxygen by the cells, and the release of carbon dioxide to the lungs

Internal Respiration

Ventilation = (inspiration + expiration) responsible muscles

➢ The diaphragm (only creates about 60-75% of the volume change during inspiration)

The muscles of Inspiration (external intercostals muscles) & muscles of expiration (internal intercostals muscles

Tidal volume in new born = 4 –6ml / kg If baby weigh=3kg TV =12 -18 ml

Surface tension

An air-filled sphere coated with water has a tendency to collapse (reach a minimum volume) due to the pulling force of water surface tension

form stronger bonds

Surface Tension

Water has a VERY HIGH surface tension

Water will attempt to minimize its surface area in contact with air

Surface tension : Attractive forces between molecule at air water interface

Law of Laplace

- Collapsing Pressure in alveoli is :
 - directly proportional to surface tension
 - and inversely proportional to radius of alveoli
- The smaller the sphere the more surface tension
 - Pressure in smaller alveolus greater

Surface tensioh^(collapsing Pressure) = $\frac{2 \times T}{r}$

Lipids form a monolayer at the air-water interface

Surface tension decreases as lipid monolayer is compressed

- 1. Alveoli are coated with lung surfactant in order to reduce the surface tension of water through:
 - a) It scatters among the fluid molecule decreasing the attraction between them.
 - b) It also spreads over the fluid preventing air-fluid interface.

thus preventing collapse (atelectasis) upon exhalation and decreasing the force necessary to expand the alveoli upon inhalation

Lung Function in respiratory distress syndrome (RDS)

 Reduction in Functional residual capacity (FRC)

Surfactant

produced by alveolar type II cells

Structure of an Alveolus

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 16.12

Endogenous Surfactant composition and functions

- Major Lipids (~90%)
- Saturated Phosphatidylcholine DPPC (*Lecithin*) 60-80%
- Unsaturated Phosphospholipids
- Phosphatidylglycerol (PG) ~10%
- Proteins (~10%)
 - SP-A

Hydrophilic, Host defense

Surfactant homeostasis

- SP-B
 - Hydrophobic, Spreading, \downarrow surface tension
- SP-C
 - Hydrophilic , Adsorption
- SP-D: ? Phagocytic function

Surfactant proteins

Surfactant proteins are divided into 2 groups:

Large and watersoluble SP-A and SP-D proteins

small, hydrofobicSP-B and SP-Cproteins.

Are of great importance to immune defense mechanisms of the lung -ability to bind to bacteria, viruses and other pathogens(- well as to activate alveolar macrophages

CSurfactant Composition

DPPC - dipalmitoylphosphatidylcholine 60%*

PG - phosphatidylglycerol

7%*

• Promotes the spreading of surfactant throughout the lungs

- 1. Serum proteins 10%
- **2. 2. Other lipids 5%***
- **3. Other phospholipids 3%***
- 4. Phosphatidylinositol 2%*
- 5. Sphingomyelin 2%*

6. Phosphatidylethanolamine 4%*

7. Unsaturated

Phosphatidylcholine 17%*

* By molecular weight

Prenatal diagnosis

 Lecithin and sphingomyelin ratio in the amniotic fluid, if ratio is more than 2 indicates adequate lung maturity

DPPC - dipalmitoylphosphatidylcholine (lecithin)60%-80%*

PG - phosphatidylglycerol

7%*

 Promotes the spreading of surfactant throughout the lungs

- 1. Serum proteins 10%
- **2. 2. Other lipids 5%***
- 3. Other phospholipids 3%*
- 4. Phosphatidylinositol 2%*

5<u>. Sphingomyelin 2%*</u> 6. Phosphatidylethanolamine 4%*

7. Unsaturated

Phosphatidylcholine 17%*

* By molecular weight

Surfactant proteins

Surfactant proteins are divided into 2 groups:

Large and watersoluble SP-A and SP-D proteins

small, hydrofobicSP-B and SP-Cproteins.

Are of great importance to immune defense mechanisms of the lung -ability to bind to bacteria, viruses and other pathogens(- well as to activate alveolar macrophages

Component

Surfactant Synthesis & Secretion

 Synthesized in the smooth endoplasmic reticulum moved to Golgi apparatus

- Surfactant is <u>synthesized</u> by *type II alveolar cells* from fatty acids that either reach the lung from blood or formed (de novo) inside it. It is stored in organelles know as *"lamellar bodies"*.

Component

Lipid

The main constituent of the monolayer

dipalmitoylphosphatidylcholine (DPPC), which

is a bipolar lipid (it has a hydrophilic 'head' and

a lipophilic 'tail')

Surfactant synthesis

monomolecular surfactant М TM Subphase Nonpol ER LB

Surface Tension

Α

DPPC-rich

ST~0

compressio

Mixed Film ST~25

BC1

աղ աղ որ

Air

Hypophase

 Surfactant Lipoprotein complex that lowered the surface tension synthesized by Type II

1-This decreased surface tension:

Roles of Lung surfactant

surfactant decreases surface tension

- pulmonary compliance
- Respiratory distress syndrome (RDS)

Fetal lung maturity

• alveolar collapse

34

Ventilation in the presence of surfactant

- Disrupts the surface tension & cohesion of water molecules
- Impact?
 - prevents alveoli from sticking together during expiration

(a) Pressure is greater in the smaller bubble.

(b) Surfactant reduces surface tension (T). Pressure is equalized in the large and small bubbles.

P = 3

Larger bubble Smaller bubble $(2 \times 3)/1$ P = 6

	•	
•	•	•
• .	•	
r = 2		r
T = 2		т
$P = (2 \times 2)/2$		P = (2
D - 2		D

- This decreased surface tension:
 - Increase the lung compliance
 - Helps lung
 expansion during
 inspiration

This decreased surface tension:

- Increase the lung compliance
 - Helps lung expansion during inspiration
 - stabilize the alveoli :
 This protects the alveoli from
 - **Collapse during** expiration
 - over distention during inspiration
 Prevent collapse during expiration (atalactasis)

Structure of an Alveolus

3605506.jpg

This decreased surface tension:

 Protects against pulmonary edema as it decreases the filtration forces for the fluid from pulmonary capillaries into alveoli.

Phases of Lung Development

Case

Define preterm Gestation age < 37 weeks from Last menstrual period

Baby born preterm at 28 week

Gestational Age

Classification of Size

- LGA <u>SGA</u>- small for gestational age-weight below 10th percentile
 - <u>AGA</u>-weight between 10 and 90th percentiles (between 5lb 12oz (2.5kg) and 8lb 12 oz (4kg).
 - <u>LGA</u>-weight above 90th percentile
 - <u>IUGR</u>-deviation in expected fetal growth pattern, caused by multiple adverse conditions, not all IUGR infants are SGA, may or may not be "head sparing"

What Next?

CLINICAL MANIFESTATION

Tachypnea

- Nasal flaring
- Intercostal, sternal recession
- Grunting; closure of glottis during expiration
- Cyanosis

Respiratory Distress Syndrome (RDS)

- Also called hyaline membrane disease.
- Most common cause of respiratory distress in preterm infants.
- Due to structural and functional immaturity of lungs.
 - Underdeveloped parenchyma
 - Surfactant deficiency
 - Type II pneumatocytes
- Results in decreased lung compliance, unstable alveoli

pathophysiology

 Instability of terminal airspaces (difficult to expand during inspiration and atelectasis at expiration) due to elevated surface forces at liquid-gas interfaces (elevated surface tension)

 \succ Loss of functional residual capacity

Diminished surfactant :

➢ Progressive Atelectasis

Small lungs and small tidal volum

Alterations in ventilation perfusi

Uneven distribution of ventilatid

Bronchiole

Pulmonary Vein

Lung compliance in RDS

 Lung Compliance is also reduced: from 1-2 to 0.2 -0.5 ml/cmH₂O/kg

RDS: clinical picture

- At admission of the baby he has
 - Cyanosis
 - Pulse Oximeter 75% (normal > 95%)

Blood gas:

• PaO2 = 45% mmHg (normal 80-108)

• CO2 = 65 mmHg (normal 35-45)

Lung hypo perfusion V/Q mismach

Hyaline membrane- combination of sloughed epithelium, protein & edema.

endothelial cell, and their fused basement membranes.

Hyaline membrane- combination of sloughed epithelium, protein & edema.

 Photograph of an autopsy specimen demonstrates small atelectatic lungs with focal hemorrhage (arrow) visible on the pleural surface.

Incidence

Respiratory Distress Syndrome (RDS)

- Also known as <u>Hyaline Membrane Disease</u> (HMD)
- Commonest cause of preterm neonatal mortality
- RDS occurs primarily in premature infants; its incidence is inversely related to gestational age and birth weight

Gestational age	Percentages	
Less than 28 wks	60-80%	
32-36 wks	15-30%	
37-39 wk	5%	
Term	Rare	

Nelson Textbook of Pediatrics, 18th Ed.

Risk Factors

Incr		-	Die	
Incr	eas	eu	NIS	K
And in case of the local division of the		_	the second second second	

- Maternal diabetes
- multiple births
- cesarean section delivery
- perinatal asphyxia
- cold stress
- history of previously affected infants

Decreased Risk

- Chronic or pregnancyassociated hypertension
- maternal heroin use
- prolonged rupture of membranes
- antenatal corticosteroid prophylaxis

Genetic Predisposition to RDS

- Susceptibility to RDS is interaction between genetic, environmental and constitutional factors
- Very preterm infants
 - Common allels preddicts RDS: SP- A 642, Sp-B121, Sp-C 186 ASN.
- Term Infants: Loss of function mutation of SP-B, SP-C, phospholipids transporter ABCA3

CXR

Severe RDS- white lung

Chest radiograph: air bronchogram, reticular/ ground-glass appearance after 6-12 hrs to full opacity later on.

Grade 4 - severe case, complete white-out of the lung fields with obscuring of the cardiac border

Prevention

• Prevention of prematurity

• Antenatal corticosteroid therapy

Dexamethasone or betamethasone

 \downarrow RDS mobidity and mortality

• PS prophylatic therapy

RDS - Treatment

- Oxygen
- CPAP
- Mechanical ventilation
- Surfactant replacement
- Supportive Care

Respiratory support

Treatment

Oxygen therapy and assist ventilation

1.oxygen therapy

- nasal cannula, mask or headbox oxygen
- keep PaO₂ 50-70mmHg, S₂O₂ 90-95%

2. CPAP (continuous positive airway pressure)

- Prevent alveolar collapse at end expiration
- Indication: $FiO_{2.} > 0.4$, $PaO_{2} < 50 \text{ mmHg or } S_{a}O_{2} < 85\%$

24

• Pressure: 4-6 cmH₂O

Antenatal steroid and Surfactant goes hand in hand

