Drug Treatment of Ischemic Heart Disease

Munir Gharabibeh, MD, PhD, MHPE
School of Medicine,
The University of Jordan
November, 2017
Categories of Ischemic Heart Disease

Fixed "Stable", Effort Angina
Variant Angina “Primary Angina”
Unstable Angina
Myocardial Infarction
Ischemic heart disease

Coronary thrombosis
- Myocardial infarction

Transient coronary ischemia
- Angina pectoris
 - Atherosclerosis and exertion
 - Typical angina
 - Acute vasospasm
 - Variant angina

 Plaque rupture and platelet aggregation
 - Stable angina
 - Unstable angina
<table>
<thead>
<tr>
<th>Secondary Angina</th>
<th>Primary Angina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>Variant (Prinzmetal’s)</td>
</tr>
<tr>
<td>Angina of Effort</td>
<td>Angina at Rest</td>
</tr>
<tr>
<td>Typical</td>
<td>Atypical</td>
</tr>
<tr>
<td>1768</td>
<td>1957</td>
</tr>
<tr>
<td>Small vessels</td>
<td>Large vessels</td>
</tr>
<tr>
<td>Single or multiple</td>
<td>Single</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>Vasospasm</td>
</tr>
<tr>
<td>ST depression</td>
<td>ST elevation</td>
</tr>
</tbody>
</table>
Stunning? (مدوخ):

- Myocardial stunning is the reversible reduction of function of heart contraction after reperfusion not accounted for by tissue damage or reduced blood flow.
Control of smooth muscle contraction

- Contraction is triggered by influx of calcium through L-type transmembrane calcium channels.
- Calcium combines with calmodulin to form a complex that converts the enzyme myosin light-chain kinase to its active form (MLCK*).
- MLCK phosphorylates myosin light chains, thereby initiating the interaction of myosin with actin.
- Beta2 agonists (and other substances that increase cAMP) may cause relaxation in smooth muscle by accelerating the inactivation of MLCK and by facilitating the expulsion of calcium from the cell.
Control of vascular smooth muscle contraction

1. Ca^{2+}
 - Ca^{2+} channel blockers

2. Calmodulin
 - Ca^{2+} - Calmodulin complex
 - MLCK^*
 - Myosin-LC kinase (MLCK)
 - Myosin-LC-PO$_4$
 - Actin
 - Contraction

3. ATP
 - β_2 agonists
 - cAMP
 - MILK(PO$_4$)$_2$
 - cGMP
 - Myosin-LC
 - Relaxation

Vascular smooth muscle cell

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Mechanism of IHD

Imbalance of the ratio:

\[\text{O}_2 \text{ Supply (Coronary Blood Flow)} \]

\[\text{O}_2 \text{ Demand (Work of the Heart)} \]
Major Determinants of Myocardial Oxygen Supply and Demand

<table>
<thead>
<tr>
<th>Oxygen supply</th>
<th>Oxygen demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen extraction (%)</td>
<td>Wall tension</td>
</tr>
<tr>
<td>Coronary blood flow</td>
<td>Ventricular volume</td>
</tr>
<tr>
<td>Aortic diastolic pressure</td>
<td>Radius or heart size</td>
</tr>
<tr>
<td>Coronary arteriolar resistance</td>
<td>Ventricular pressure</td>
</tr>
<tr>
<td>Metabolic autoregulation</td>
<td>Systolic pressure</td>
</tr>
<tr>
<td>Endocardial-epicardial flow</td>
<td>(afterload)</td>
</tr>
<tr>
<td>Coronary collateral blood flow</td>
<td>Diastolic pressure</td>
</tr>
<tr>
<td>Large coronary artery diameter</td>
<td>(preload)</td>
</tr>
<tr>
<td></td>
<td>Heart rate</td>
</tr>
<tr>
<td></td>
<td>Contractility</td>
</tr>
</tbody>
</table>
Pharmacological modification of the major determinants of myocardial O2 supply

Agents decreasing O2 demand

- β Adrenergic antagonists
- Some Ca2+ entry blockers
- Organic nitrates
- Ca2+ entry blockers

Agents increasing O2 Supply

- Coronary blood flow
- Regional myocardial blood flow
- Vasodilators (esp. Ca2+ entry blockers)
- Also statins, anti-thrombotics

Heart rate
Contractility
Preload
Afterload

O2 Demand

BALANCE

O2 Supply

ISCHEMIA

Source: Brunton LL, Chabner BA, Knollmann BC: Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th Edition: www.accessmedicine.com
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
19.1 Simplified diagram of atherosclerosis, angina and myocardial infarction, and drugs used in treatment.
Organic Nitrates

Nitroglycerine (GTN):

- Prototype, used for more than 150 years.
- Nonspecific smooth muscle relaxant.
- Action is due to release of NO, leading to activation of guanylyl cyclase.
- Action not antagonized by any known antagonist.
Nitrates, nitrites, and other substances that increase the concentration of nitric oxide (NO) in vascular muscle

Blood vessel lumen

Capillary endothelial cells

Arginine \rightarrow eNOS \rightarrow Nitric oxide (NO)

Interstitium

Vascular smooth muscle cell

Capillary endothelial cells

Ca^{2+}

MLCK^*

GTP

Guanylyl cyclase

GC^*

cGMP

PDE

GMP

Nitrates

Nitrites

Myosin light chains (myosin-LC)

Myosin-LC-PO_4

Actin

Contraction

Relaxation

Myosin-LC

Source: Katzung BG, Masters SB, Trevor AJ. Basic & Clinical Pharmacology
Nitroglycerine (GTN)

► Usually administered sublingually.

► Can be administered by various routes.

► Fast onset of action (1-3 minutes, Peaks at 10 minutes).

► Short duration (15-30 minutes).

► Reductase enzyme, in liver, breaks down the drug.
Nitroglycerine (GTN)

- **Causes general vasodilation:**

- **Arteriolar dilation:** short lived (5-10 min)
 - Decreases systemic blood pressure (afterload), but causes reflex tachycardia and increased contractility, might increase MVO2.

- **Venous dilation:** more intense, even with low doses, lasts for 30 minutes.
 - Decreases venous return (preload) and decreases MVO2.
Figure 19-2
A schematic drawing indicating the major actions of the nitrates on the ischemic heart and peripheral circulation. ↓ = decrease; ↑ = increase; ↔ = unchanged; †† = variable effect.

- Afterload (↓)
- Preload (↓↓↓)
- Heart rate (↔↑)
- Contractility (↔↑)
- Wall tension (↓↓↓)
- Stenosis diameter (↑)
- Site of occlusion
- Collateral vessel diameter (↑↑)
- Ischemic area
- Transmural blood flow (epicardial ↓)
 (endocardial ↑)
TABLE 12–2 Beneficial and deleterious effects of nitrates in the treatment of angina.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential beneficial effects</td>
<td></td>
</tr>
<tr>
<td>Decreased ventricular volume</td>
<td>Decreased myocardial oxygen requirement</td>
</tr>
<tr>
<td>Decreased arterial pressure</td>
<td></td>
</tr>
<tr>
<td>Decreased ejection time</td>
<td></td>
</tr>
<tr>
<td>Vasodilation of epicardial coronary arteries</td>
<td>Relief of coronary artery spasm</td>
</tr>
<tr>
<td>Increased collateral flow</td>
<td>Improved perfusion to ischemic myocardium</td>
</tr>
<tr>
<td>Decreased left ventricular diastolic pressure</td>
<td>Improved subendocardial perfusion</td>
</tr>
<tr>
<td>Potential deleterious effects</td>
<td></td>
</tr>
<tr>
<td>Reflex tachycardia</td>
<td>Increased myocardial oxygen requirement</td>
</tr>
<tr>
<td>Reflex increase in contractility</td>
<td>Increased myocardial oxygen requirement</td>
</tr>
<tr>
<td>Decreased diastolic perfusion time due to tachycardia</td>
<td>Decreased coronary perfusion</td>
</tr>
</tbody>
</table>
Nitroglycerine (GTN)

- **Side Effects:**
 - Headache.
 - Hypotension and tachycardia.
 - Increased intraocular and intracranial pressures.
 - Methemoglobinemia.
 - Tolerance: only for the arteriolar effects.
 - Withdrawal: in workers in ammunition industry.

Nov-17

Munir Gharaibeh MD, PhD, MHPE
Preparations of Nitrate

<table>
<thead>
<tr>
<th>Drug</th>
<th>Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-acting:</td>
<td></td>
</tr>
<tr>
<td>Nitroglycerin, sublingual</td>
<td>10–30 minutes</td>
</tr>
<tr>
<td>Isosorbide dinitrate, sublingual</td>
<td>10–60 minutes</td>
</tr>
<tr>
<td>Amyl nitrite, inhalant</td>
<td>3–5 minutes</td>
</tr>
<tr>
<td>Long-acting:</td>
<td></td>
</tr>
<tr>
<td>Nitroglycerin, oral sustained-action</td>
<td>6–8 hours</td>
</tr>
<tr>
<td>Nitroglycerin, 2% ointment, transdermal</td>
<td>3–6 hours</td>
</tr>
<tr>
<td>Nitroglycerin, slow-release, buccal</td>
<td>3–6 hours</td>
</tr>
<tr>
<td>Nitroglycerin, slow-release patch, transdermal</td>
<td>8–10 hours</td>
</tr>
<tr>
<td>Isosorbide dinitrate, sublingual</td>
<td>1.5–2 hours</td>
</tr>
<tr>
<td>Isosorbide dinitrate, oral</td>
<td>4–6 hours</td>
</tr>
<tr>
<td>Isosorbide dinitrate, chewable oral</td>
<td>2–3 hours</td>
</tr>
</tbody>
</table>
Beta Adrenergic Blockers

- Prevent actions of catecholamines, so more effective during exertion.
- Do not dilate coronary arteries, might constrict them.
- Do not increase collateral blood flow.
- Cause subjective and objective improvement: decreased number of anginal episodes, nitroglycerine consumption, enhanced exercise tolerance, and improved ECG.
Figure 19-3
A schematic drawing indicating the major actions of the β-blockers on the ischemic heart and peripheral circulation. For key, see Fig. 19-2.
Calcium Channel Blockers

- Particularly beneficial in vasospasm.
- Can also affect platelets aggregation.
- May be dangerous in the presence of heart failure and in patients susceptible to hypotension.
Properties of Several Recognized Voltage-Activated Calcium Channels.

<table>
<thead>
<tr>
<th>Type</th>
<th>Channel Name</th>
<th>Where Found</th>
<th>Properties of the Calcium Current</th>
<th>Blocked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Ca({V})1.1–Ca({V})1.3</td>
<td>Cardiac, skeletal, smooth muscle, neurons (Ca(_{V})1.4 is found in retina), endocrine cells, bone</td>
<td>Long, large, high threshold</td>
<td>Verapamil, DHPs, Cd(^{2+}), -aga-III A</td>
</tr>
<tr>
<td>T</td>
<td>Ca({V})3.1–Ca({V})3.3</td>
<td>Heart, neurons</td>
<td>Short, small, low threshold</td>
<td>sFTX, flunarizine, Ni(^{2+}), mibebradil(^1)</td>
</tr>
<tr>
<td>N</td>
<td>Ca(_{V})2.2</td>
<td>Neurons, sperm(^2)</td>
<td>Short, high threshold</td>
<td>Ziconotide,(^3) gabapentin,(^4) -CTX-GVIA, -aga-III A, Cd(^{2+})</td>
</tr>
<tr>
<td>P/Q</td>
<td>Ca(_{V})2.1</td>
<td>Neurons</td>
<td>Long, high threshold</td>
<td>-CTX-MVIIC, -aga-IVA</td>
</tr>
<tr>
<td>R</td>
<td>Ca(_{V})2.3</td>
<td>Neurons, sperm(^2)</td>
<td>Pacemaking</td>
<td>SNX-482, -aga-III A</td>
</tr>
</tbody>
</table>

\(^1\)Munir Gharaibeh MD, PhD, MHPE
Calcium channel blockers

- Phenylalkylamines
 - Verapamil

- Benzothiazepines
 - Diltiazem

- Dihydropyridines
 - 1st generation
 - Nifedipine
 - 2nd generation
 - Isradipine
 - Nicardipine
 - 3rd generation
 - Felodipine
 - Amlodipine
Figure 19-4
A schematic drawing indicating the major actions of the calcium antagonists on the ischemic heart and coronary circulation. For key, see Fig. 19-2.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Oral Bioavailability (%)</th>
<th>Half-Life (hours)</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dihydropyridines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amlodipine</td>
<td>65–90</td>
<td>30–50</td>
<td>Angina, hypertension</td>
</tr>
<tr>
<td>Felodipine</td>
<td>15–20</td>
<td>11–16</td>
<td>Hypertension, Raynaud's phenomenon</td>
</tr>
<tr>
<td>Isradipine</td>
<td>15–25</td>
<td>8</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>35</td>
<td>2–4</td>
<td>Angina, hypertension</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>45–70</td>
<td>4</td>
<td>Angina, hypertension, Raynaud's phenomenon</td>
</tr>
<tr>
<td>Nimodipine</td>
<td>13</td>
<td>1–2</td>
<td>Subarachnoid hemorrhage</td>
</tr>
<tr>
<td>Nisoldipine</td>
<td>< 10</td>
<td>6–12</td>
<td>Hypertension</td>
</tr>
<tr>
<td>Nitrendipine</td>
<td>10–30</td>
<td>5–12</td>
<td>Investigational</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diltiazem</td>
<td>40–65</td>
<td>3–4</td>
<td>Angina, hypertension, Raynaud's phenomenon</td>
</tr>
<tr>
<td>Verapamil</td>
<td>20–35</td>
<td>6</td>
<td>Angina, hypertension, arrhythmias, migraine</td>
</tr>
</tbody>
</table>
Calcium Channel Blockers

► **Side Effects:**
► Hypotension.
► Headache, dizziness.
► Flushing.
► Peripheral edema.
Effects of Nitrates Alone and with Beta Blockers or Calcium Channel Blockers in Angina Pectoris.

<table>
<thead>
<tr>
<th></th>
<th>Nitrates Alone</th>
<th>Beta Blockers or Calcium Channel Blockers</th>
<th>Combined Nitrates with Beta Blockers or Calcium Channel Blockers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
<td>Reflex(^1) increase</td>
<td>Decrease</td>
<td>Decrease</td>
</tr>
<tr>
<td>Arterial pressure</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Decrease</td>
</tr>
<tr>
<td>End-diastolic volume</td>
<td>Decrease</td>
<td>Increase</td>
<td>Non or decrease</td>
</tr>
<tr>
<td>Contractility</td>
<td>Reflex(^1) increase</td>
<td>Decrease</td>
<td>Non</td>
</tr>
<tr>
<td>Ejection time</td>
<td>Decrease</td>
<td>Increase</td>
<td>Non</td>
</tr>
</tbody>
</table>
Dipyridamole

- Inhibits the uptake of adenosine and inhibits adenosine deaminase enzyme.
- Thought to be a good coronary dilator.
- Increases the blood flow to the normal area i.e. “Coronary Steal Phenomenon”.
- Still used as an antiplatelet drug (in TIAs), but not better than aspirin.
Others

► ACEI.

► Anticoagulants and/or Thrombolytic Therapy.

► Cholesterol Lowering Agents.

► Angioplasty

► Surgery.
Stent addresses the existing lesion but not future lesions.

Bypass grafting addresses the existing lesion and also future culprit lesions.

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Newer Antianginal Drugs

- Metabolic modulators: Ranolazine.
- Direct bradycardic agents: Ivabradine.
- Potassium channel activators: Nicorandil.
- Rho-kinase inhibitors: Fasudil.
- Sulfonylureas: Glibenclamide.
- Thiazolidinediones.
- Vasopeptidase inhibitors.
- Nitric oxide donors: L-arginine.
- Capsaicin.
- Amiloride.