CNS pathology Third year medical students

Dr Heyam Awad

2018

Lecture 3: Nerve trauma, regeneration and neural tumours

ILOS

- 1. To understand Wallerian degeneration and its importance as a first step in regeneration
- 2. to know the effects of Schwann cells in axonal regeneration in the PNS
- 3. to understand the reasons behind the difference of regeneration in the CNS and PNS
- 4. to list the main tumours of PNS and know some of their features
- 5. to understand the difference between NF 1 and NF 2 and know their clinical presentation.

Nerve injury

- nerves can be injured during road traffic accidents, or compressed due to adjacent bone fracture, or in other accidents.
- nerves of the PNS can regenerate, but restoration of function is only possible if the injury is minimal.
- repair can be improved by surgical intervention.

nerve regeneration

- Peripheral nerves can regenerate after trauma.
- the axons of the CNS have a very limited capacity to regenerate, whereas the axons of the PNS can regenerate.
- this difference between CNS and PNS regeneration is related mainly to the difference in response of oligodendrocytes and Schwann cells to injury.

Important note

- Although PNS axons have a capacity to regrow, the functional recovery of nerve function depends on the extent of injury and can be improved by surgical approximation of injured nerve or by nerve grafts.
- nerve graft is a surgical technique where a segment of an unaffected nerve is used to replace or bridge an injured nerve. The donor nerve is usually a sensory nerve where if a section is taken from it, some numbness will occur but there will be no serious effects. Example of a donor nerve is the Sural nerve.

nerve graft

- When the nerve cut is long a graft might be needed.
- Part of a nerve, usually a sensory nerve, like the Sural nerve is taken and grafted
- note that the removed segment will cause some effects, like numbness or decreased sensations.

Regeneration

- for nerves to regenerate, first the debris happening due to the damage must be cleared.
- <u>Schwann cells and macrophages</u> are the most important cells that clear this debris, mainly by phagocytosis.

Steps during neural regeneration

- Injury to a nerve elicits an inflammatory response of non- neuronal cells, mainly Schwann cells and macrophages.
- these cells cause degeneration of the the part of the nerve distal to the injury
- This degeneration is called: *Wallerian degeneration*
- this degeneration clears the inhibitory debris in the peripheral nerve and to the production of an environment that supports axon regrowth.

Wallerian degeneration was studies first on nerves from frogs!

Nerve regeneration: Wallerian degeneration is the first step in the regeneration process as it clears the debris that inhibits regeneration.

functions of Schwann cells during regeneration

- soon after injury, Schwann cells start to dedifferentiate, they alter gene expression, so they <u>stop producing myelin</u>, and they <u>up</u> <u>regulate regeneration associated genes</u>
- they divide: <u>hyperplasia</u> of Schwann cells.
- they <u>remove myelin debris</u> which is a barrier to growth of the axon.
 So they have some **phagocytic activity.**
- they also secrete trophic factors that help growth, mainly cytokines.
- they recruit macrophages which continue removing the debris
- Secrete factors that support neural survival and growth

- Schwann cells can survive and support the nerve for 8 weeks. after the 8th week their function deteriorates and they die by apoptosis.
- This time scale limits successful long distance regeneration
- in general nerves regenerate at a rate of 1mm per day.

Why axonal regeneration is limited in the CNS

- Oligodendrocytes respond to neural injury by apoptosis or entering a quiescent state and they have very little phagocytic activity. So clearance of degenerate debris is ineffective in the CNS.
- Astrocytes are activated during injury causing gliosis and producing inhibitory cytokines. this decreases the ability of axons to regenerate.

WALLERIAN DEGENERATION

• The degenerative changes the distal segment of a peripheral nerve fiber (axon and myelin) undergoes,

REGERNERATION

- Regrowth of the axon will take place down the endoneurial tube.
- Regeneration of the axon will grow at the rate of 1-2 mm/day.

Traumatic neuroma

- if the ends of a cut nerve are not approximated, the regenerating axons might grow in a haphazard fashion, forming a mass called traumatic neuroma.
- So: traumatic neuromas are non-neoplastic masses related to a previous trauma and composed of a haphazard mixture of axons, Schwann cells and connective tissue.
- traumatic neuromas contain abnormal nerve bundles, so the mass is usually painful.

Tumours of PNS

- Tumours arising from peripheral nerves can be benign or malignant
- Benign tumours include schwannoma and neurofibroma
- Malignant tumours include: malignant peripheral nerve sheath tumour. (MPNST)

Schwannoma

- Benign, encapsulated tumours that are composed of proliferation of Schwann cells.
- Can arise in soft tissue, internal organs, spinal roots or cranial nerves
- the most cranial nerve affected is the vestibular portion of the eighth cranial nerve which can result in hearing loss.
- Can be sporadic or familial

Shwannoma

Note that the tumour is well circumscribed, encapsulated and abuts a nerve (as if it hugs the nerve but not actually arsing from it.. this is because it is a proliferation of Schwann cells that are adjacent to the nerve.)

Schwannoma

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Schwannoma: note the encapsulation which makes it easy for full surgical removal the tumour

Familial schwannomas

- 10% of schwannomas are familial, these occur in association with **neurofibromatosis type 2.**
- Familial schwannomas are usually **multiple**.
- the presence of bilateral vestibular schwannoma is a hallmark for NF 2
- Patients with NF 2 can have other CNS tumours like meningiomas and ependymomas
- Although the syndrome is called neurofibromatosis, patients do not have neurofibromas!!!!

Vestibular schwannoma

- Note that vestibular schwannomas can be sporadic or familial.
- if a patient has bilateral vestibular schwannomas, this almost always means that the patient has NF 2
- Note: not all patients with NF2 will have bilateral schwannomas.

Genetic mutation in NF 2

- NF2 is caused by loss of function mutation in **merlin** gene on chromosome 22.
- Merlin is a cytoskeletal protein that is a tumour suppressor gene by facilitating E cadherin mediated contact inhibition.
- With mutated merlin contact inhibition is lost so tumours can proliferate.

merlin protein and contact inhibition

- Please remember that contact inhibition is an important process to limit and regulate cell growth
- If contact inhibition is lost growth can go unchecked
- E cadherin is the most important factor causing contact inhibition
- Merlin protein facilitated contact inhibition
- if merlin is lost then contact inhibition is lost and tumours occur
- Loss of function mutation in merlin protein is the underlying genetic defect in NF2

Image: Section of the section of th

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Contact inhibition

Neurofibroma

- Benign peripheral nerve sheath tumours.
- they are benign but not encapsulated
- Composed of proliferating Schwann cells admixed with other cells including mast cells and fibroblasts.
- Can be sporadic or familial (neurofibromatosis type 1= NF 1)

NF 1

- Autosomal dominant disorder caused by mutation in neurofibromin
- neurofibromin is a tumour supressor gene encoded on chromosome 17. It is a negative regulator of the Ras oncoprotein.
- Patients have multiple neurofibromas, malignant peripheral nerve sheath tumour, optic gliomas, and other glial tumours.
- Patients also have learning disability, seizures, pigmented nodules in the iris and pigmented skin lesions= cafe- au-lait spots.

Cafe-au-lait spots the word means: coffee with milk, referring to the colour of the spots!

Neurofibromatosis 1: multiple neurofibromas

Malignant peripheral nerve sheath tumour MPNST

- Malignant tumours arising from Schwann cells
- 50% occur in the setting of NF 1
- Histologically: highly cellular, anaplastic, pleomorphic, and show necrosis and a high mitotic rate.

Question

- Which of the following patients least likely has neurofibromatosis type 2?
- A. A 30 year old patient suffering from decreased hearing acuity. he was found to have bilateral tumors of the 8th cranial nerves.
- B. A 43 year old woman having an ependymoma. 3 years ago she underwent surgical excision for a meningioma. her mother removed several tumours, all were reported as schwannomas.
- C. A 12 year old boy, who had a genetic test that revealed mutation in the merlin gene.
- D. A 24 year old woman suffering from multiple skin masses which were non-capsulated and composed of proliferation of Schwann cells admixed with fibroblasts and mast cells.

Explanation of the question

 the answer is D. the description of the lesions is that of a neurofibromas, and neurofibromas are not seen in NF 2

Summary 1/3

- Axons of the PNS can regenerate at a rate of 1mm per day.
- This regeneration can restore function if the injury is mild. More severe injuries need surgical approximation or grafting to improve regeneration.
- the first step in regeneration is Wallerian degeneration which involves proliferation of Schwann cells that dedifferentiate: they decrease myelin production, phagocytose myelin debris resulting from injury, produce cytokines that stimulate nerve growth and recruit macrophages that also phagocytose debris resulting from the injury.
- Clearance of the necrotic debris is essential for nerve regeneration.
- this clearance doesn't occur in the CNS and that's why axonal regeneration of CNS is very limited.
- The regeneration is limited by the fact that Schwann cells' efficiency decreases after 8 weeks of injury.

summary 2/3

- oligodendrocytes in CNS die by apoptosis or become quiescent in response to injury, they cannot clear the necrotic debris that inhibits regeneration.
- Astrocytes also inhibit regeneration by forming gloiosis and secreting inhibitory cytokines.
- Traumatic neuromas are painful, non neoplastic proliferations of haphazardly arranged axons, Schwann cells and connective tissue, resulting after trauma.
- Neurofibroma is a benign non encapsulated tumour of Schwann cells mixed with fibroblasts and mast cells
- Schwannomas are benign encapsulated tumours of Schwann cells.
- Peripheral nerve sheath tumour is a malignant tumour of Schwann cells. Half of cases are familial (NF1)

summary 3/3

- NF 1 is an autosomal dominant syndrome characterised by multiple neurofibromas, PNST, gliomas and cafe au last skin lesions.
- NF 1 is caused by a mutation in neurofibromin, an inhibitor of Ras oncogene.
- NF 2 is characterised by multiple schwannomas (including acoustic schwannomas that can be bilateral), meningiomas and ependymomas BUT NOT NEUROFIBROMAS.
- NF 2 is caused by a mutation in merlin protein resulting in loss of contact inhibition.

