Neuronal Circuits and Neuronal Pools

6. Lateral inhibition

Fig. 10. Center-surround receptive fields can be ON center or OFF center with the oposite sign annular surround.

The Reality of the Clinical Environment

One Cardinal Plane to Learn AND Understand - Midsagittal

A Second Cardinal Plane to Learn AND Understand–Mid-Axial

CT & MRI

Remember, Your Right is the Patient's Left

Remember, Your Right is the Patient's Left

infarction

tumor

Lesions: localization and types in nervous system

You have been asked to neurologically test a 56 year old patient in a hospital room. Although he was open his eyes, he looked comatose and when you asked him questions he did not reply or do anything. However his wife told you that he usually communicates with her by blinking his eyes, and she asked her husband to blink once for "yes" and twice for "no". Then you asked him if he were at home and he blinked twice. When you asked if he were in a hospital, he blinked once. Then you asked him to move his eyes, and he was able to look in your direction. However, when you asked him if he could move his arms or legs, he blinked twice. He also blinked twice when you asked if he could smile and when asked if he could feel someone moving his arm or leg. Which of the following is the most description of his lesion?

A. Uncal herniation bilaterally

- B. Upward Cerebellar Herniation bilaterally
- C. Bilateral internal capsule stroke
- D. Bilateral Upper midbrain stroke
- E. Bilateral pontine tegmentum stroke

- types of sensations
 General sensation
 - Somatic
 - visceral
 - Special senses
 - Smell, taste, vision etc

• types of sensations

- types of sensations
 General sensation

 Somatic
 visceral
 proprioceptor

 Special senses
 - Smell, taste, vision etc

- types of sensations
 General sensation

 Somatic
 visceral
 Special senses
 Smell, taste, vision etc

Sensations receptors

Free nerve endings

Pacinian corpuscle

Ruffini's end-organ

Expanded tip receptor

Meissner's corpuscle

Golgi tendon apparatus

Hair root plexus

Merkel discs

Muscle spindle

Types of Sensory Receptors

- Mechanoreceptors
 - detect deformation
- Thermoreceptors
 - detect change in temperature
- Nociceptors
 - detect damage (pain receptors)
- Electromagnetic
 - detect light
- Chemoreceptors
 - taste, smell

Classification of Somatic Sensations

- mechanoreceptive stimulated by mechanical displacement.
 - tactile
 - touch
 - pressure
 - vibration
 - tickle and itch
 - position or proprioceptive
 - static position
 - rate of change

Classification of Somatic Sensations

- thermoreceptive.
 - detect heat and cold.
- nociceptive.
 - detect pain and are activated by any factor that damages tissue.

Receptor Excitation

Figure 46-03

Receptor Potential

- the membrane potential of the receptor.
 - excitation of the receptor results from a change in this potential.
 - when the receptor potential rises above the threshold, action potentials appear and the receptor is active.
 - the greater the intensity of the stimulus, the greater the receptor potential, and the greater the rate of action potential generation.

Relationship between receptor potential and action potentials

Adaptation of Receptors

• when a continuous stimulus is applied, receptors respond rapidly at first, but response declines until all receptors stop firing.

Adaptation of Receptors

• when a continuous stimulus is applied, receptors respond rapidly at first, but response declines until all receptors stop firing.

Figure 46-5

Slowly Adapting (Tonic) Receptors

- continue to transmit impulses to the brain for long periods of time while the stimulus is present.
- keep brain apprised of the status of the body with respect to its surroundings.
- will adapt to extinction as long as the stimulus is present, however, this may take hours or days.

Rapidly Adapting (Phasic) Receptors

- respond only when change is taking place.
- rate and strength of the response is related to the rate and intensity of the stimulus.
- important for predicting the future position or condition of the body.
- very important for balance and movement.

Sensations receptors

TABLE 8.1 The Major Classes of Somatic Sensory Receptors

Receptor type	Anatomical characteristics	Associated axons ^a (and diameters)	Axonal conduction velocities	Location	Function	Rate of adaptation	Threshold of activatio
Free nerve endings	Minimally specialized nerve endings	C, Αδ	2–20 m/s	All skin	Pain, temperature, crude touch	Slow	High
Meissner's corpuscles	Encapsulated; between dermal papillae	Aβ 6–12 μm		Principally glabrous skin	Touch, pressure (dynamic)	Rapid	Low
Pacinian corpuscles	Encapsulated; onionlike covering	Aβ 6–12 μm		Subcutaneous tissue, interosseous membranes, viscera	Deep pressure, vibration (dynamic)	Rapid	Low
Merkel's disks	Encapsulated; associated with peptide- releasing cells	Αβ		All skin, hair follicles	Touch, pressure (static)	Slow	Low
Ruffini's corpuscles	Encapsulated; oriented along stretch lines	Aβ 6–12 μm		All skin	Stretching of skin	Slow	Low
Muscle spindles	Highly specialized (see Figure 8.5 and Chapter 15)	Ia and II		Muscles	Muscle length	Both slow and rapid	Low
Golgi tendon organs	Highly specialized (see Chapter 15)	Ib		Tendons	Muscle tension	Slow	Low
Joint receptors	Minimally specialized	_		Joints	Joint position	Rapid	Low

Physiology of the sensory system

Types of Sensory Receptors

- Mechanoreceptors
 - detect deformation
- Thermoreceptors
 - detect change in temperature
- Nociceptors
 - detect damage (pain receptors)
- Electromagnetic
 - detect light
- Chemoreceptors
 - taste, smell

Receptor Excitation

Figure 46-03

Receptor Potential

- the membrane potential of the receptor.
 - excitation of the receptor results from a change in this potential.
 - when the receptor potential rises above the threshold, action potentials appear and the receptor is active.
 - the greater the intensity of the stimulus, the greater the receptor potential, and the greater the rate of action potential generation.

Relationship between receptor potential and action potentials

Adaptation of Receptors

• when a continuous stimulus is applied, receptors respond rapidly at first, but response declines until all receptors stop firing.

Adaptation of Receptors

• when a continuous stimulus is applied, receptors respond rapidly at first, but response declines until all receptors stop firing.

Figure 46-5

Sensations receptors

TABLE 16.2

Summary of Receptors for Somatic Sensations

RECEPTOR TYPE	RECEPTOR STRUCTURE AND LOCATION	SENSATIONS	ADAPTATION RATE
TACTILE RECEPTORS			
Meissner corpuscles (Corpuscles of touch)	Capsule surrounds mass of dendrites in dermal papillae of hairless skin.	Touch, pressure, and slow vibrations.	Rapid.
Hair root plexuses	Free nerve endings wrapped around hair follicles in skin.	Touch.	Rapid.
Merkel (tactile) discs (Type I cutaneous mechanoreceptors)	Saucer-shaped free nerve endings make contact with Merkel cells in epidermis.	Touch and pressure.	Slow.
Ruffini corpuscles (Type II cutaneous mechanoreceptors)	Elongated capsule surrounds dendrites deep in dermis and in ligaments and tendons.	Stretching of skin.	Slow.
Pacinian (lamellated) corpuscles	Oval, layered capsule surrounds dendrites; present in dermis and subcutaneous layer, submucosal tissues, joints, periosteum, and some viscera.	Pressure and fast vibrations.	Rapid.
Itch and tickle receptors	Free nerve endings in skin and mucous membranes.	Itching and tickling.	Both slow and rapid.
THERMORECEPTORS			
Warm receptors and cold receptors	Free nerve endings in skin and mucous membranes of mouth, vagina, and anus.	Warmth or cold.	Initially rapid, then slow.
PAIN RECEPTORS			
Nociceptors	Free nerve endings in every tissue of the body except the brain.	Pain.	Slow.
PROPRIOCEPTORS			
Muscle spindles	Sensory nerve endings wrap around central area of encapsulated intrafusal muscle fibers within most skeletal muscles.	Muscle length.	Slow.
Tendon organs	Capsule encloses collagen fibers and sensory nerve endings at junction of tendon and muscle.	Muscle tension.	Slow.
Joint kinesthetic receptors	Pacinian corpuscles, Ruffini corpuscles, tendon organs, and free nerve endings.	Joint position and movement.	Rapid.

Tactile Receptors

- Merkel's discs.
 - respond rapidly at first and then slowly adapt, detect the "steady state"
 - found on hairy as well a glabrous skin.

Tactile Receptors

- Merkel's discs.
 - respond rapidly at first and then slowly adapt, detect the "steady state"
 - found on hairy as well a glabrous skin.

Tactile Receptors

- Merkel's discs.
 - respond rapidly at first and then slowly adapt, detect the "steady state"
 - found on hairy as well a glabrous skin.
- Ruffini's end organ.
 - slowly adapting and respond to continual deformation of the skin and joint rotation.

ALS Pathway

Relationship Between Receptive Fields and Cortical Representation

Smaller the receptive fields, greater the density of receptors. This relationship allows for greater discrimination in sensory inputs.

Inverse relationship in the cortex. Smaller the receptive fields larger the cortical area Larger the receptive fields smaller the cortical area

Conduction speed

Number of synapses

Conduction speed

Number of synapses

Myelination

Conduction speed

Number of synapses

Myelination

Nerve axon size

